Antioxidant Activity of Leaf, Stem and Flower of Ixora coccinea Plants by Using Hydrogen Peroxide Scavenging Assays

Sneha G. Nair¹, Vikram R. Jadhav², Rayate M. M³, Bhagyashri A. More⁴

¹Department of Microbiology, ³Department of Botany, ⁴Department of Chemistry, K. K. Wagh ACS and CS College K. Nagar, Ranwad, Tal - Niphad, Dist - Nashik (India) ²Department of Chemistry, K. K. Wagh ACS College Pimpalgaon (B), Tal - Niphad, Dist - Nashik (India),

Corresponding Author: Sneha G. Nair

ABSTRACT

In this paper, we studied antioxidant activity of the ethanolic extract of leaf, stem and flower of Ixora coccinea plants by using the scavenging hydrogen peroxide Initially qualitative analysis of some phytochemical parameters, it was revealed that the extract of an Ixora coccinea plants parts possesses the contents of flavonoids, phenols, alkaloids and tannin. It gave significant activities in all antioxidant assays compared to the standard antioxidant in a dose dependent manner and remarkable activities to scavenge reactive oxygen species may be attributed to the high amounts of flavonoids and phenol contents. In hydrogen peroxide scavenging assay, % of leaf inhibition value is 87.40% at 500 µg ml⁻¹ concentration, while for % of stem and % of flower inhibition value is 84.40% and respectively. However, 83.90% coccinea extract showed strong reducing power and total antioxidant capacity.

Keywords: Antioxidant activity, hydrogen peroxide, Ixora coccinea, phytochemical parameters.

INTRODUCTION

Oxidation is basic to many living beings for the creation of energy to fuel biological procedures. The main role of oxygen radicals has been ensuared in a various disease such as diabetes, cancer, cardiovascular illness. maturing etc. antioxidants that scavenge these receptive oxygen species and free radicals are vital in forestalling the beginning and movement of numerous infections brought about by oxidative pressure¹. Synthetic antioxidants, for example, butylated hydroxy anisole (BHA) and butylated hydroxytoluene (BHT) are exceptionally viable and are utilized for industrial preparing, however they may have side reactions and toxic properties that influence human wellbeing. Nowadays the searching of antioxidants agents from plants natural sources has gotten a lot of consideration and compounds have been placed into the recognizable proof of antioxidants¹ and having no side effects. coccinea plants taxonomical Ixora characterization as appeared in the table 1, Bakora (local name) is a little evergreen bush, it has been utilized traditionally for an assortment of ailments, the leaves are utilized to treat diarrhoea, the roots are utilized to treat hiccough, fever, wounds, incessant ulcers and the blossoms have been utilized in catarrhal bronchitis and an Ayurvedic Drugs. Studies on this plant have uncovered the phytochemical screening indicated the presence of flavonoids, phenol, alkaloids, tannins etc and so gives numerous pharmacological impacts^{3,6}.

Ixora coccinea:

Photo plate 1. Ixora coccinea plants

Table No. 1. Taxonomic classification of Ixora coccinea

able No. 1. Taxonomic classification of fxora coccine			
Botanical Name	Ixora coccinea		
Common Name	Bakora (Marathi local Name)		
Classification	Kingdom	Plantae	
	Subkingdom	Tracheobionta	
	Division	Magnoliophyta	
	Class	Magnoliopsida	
	Subclass	Asteridae	
	Order	Gentianales	
	Family	Rubiaceae	
	Genus	Ixora	
	Species	Coccinea	

It found that the aqueous extract of Ixora coccinea plants showed antimicrobial, antifungal⁷, antinociceptive, antioxidants^{4,6} and anti-inflammatory activities^{2,8}. In view of this, we report the antioxidant activity and qualitative analysis of some phytochemical parameters of the flower, leaf, and stem of Ixora coccinea plants by using hydrogen peroxide radical scavenging assay.

MATERIALS AND METHODS

Materials:

Leaves, stem and flower of the Ixora coccinea plants were collected from the campus of K. K. Wagh College, Ranwad, Nashik (Maharashtra)

Plant extract:

Fresh aqueous extraction method.

Qualitative Phytochemical analysis: Test for Flavonoid (Shinoda Test):

Test for Terpenoid (Copper Acetate test):

Copper acetate + plants extracts -----→ Green colour.

Test for Alkaloids (Wagner's reagent test):

Wagner's reagent + plants extract ---→ reddish brown precipitate.

Test for Tannins ($K_2Cr_2O_7$ test):

Plants extract + $K_2Cr_2O_7 \longrightarrow rec$ precipitate

Antioxidant activity of Ixora coccinea plant extract by H_2O_2 method:

The different concentration⁵ of plant extracts 100 to $500 \mu g \text{ ml}^{-1}$ was prepared and H_2O_2 solution was added, then incubated for 25 minutes in a dark condition, after readings were taken by using ultra violet (UV) spectrophotometer at 517 nm.

Table No. 2. Hydrogen peroxide scavenging antioxidant activity for ethanolic leaf extract. (Stock concentration is 20000 μg ml⁻¹), Protocol for Hydrogen peroxide assay of leaf extract.

U	nocoi foi Hydrogen peroxide assay of leaf extract.					
	Conc. µg ml ⁻¹	Stock (µl)	Solvent (µl)	H ₂ O ₂ (μl)	Incubation (min)	
	100	18	1982	1000	30	
	200	36	1964	1000	30	
	300	55	1945	1000	30	
	400	73	1927	1000	30	
	500	100	1900	1000	30	
	Blank	-	2000	1000	30	

Table No 3. Hydrogen peroxide Scavenging antioxidant activity of ethanolic stem extract (Stock concentration⁵ is 9500 μg ml⁻¹). Protocol for Hydrogen peroxide assay of stem extract.

Conc. µg ml ⁻¹	Stock (µl)	Solvent (µl)	$H_2O_2(\mu l)$	Incubation (min)
100	42	1958	1000	30
200	84	1916	1000	30
300	126	1874	1000	30
400	168	1832	1000	30
500	211	1789	1000	30
Blank	-	2000	1000	30

Table No. 4. Hydrogen peroxide Scavenging antioxidant activity of ethanolic flower extract (Stock concentration is 35000 μg ml⁻¹). Protocol for Hydrogen peroxide assay of flower extract.

Conc. µgml ⁻¹	Stock (µl)	Solvent (µl)	H ₂ O ₂ (μl)	Incubation (min)
100	11.26	1988	1000	30
200	22.52	1978	1000	30
300	33.80	1966	1000	30
400	45.06	1955	1000	30
500	56.32	1944	1000	30
Blank	-	2000	1000	30

Formula:

Hydrogen peroxide scavenging effect

(% inhibition) = $\frac{A0-A1}{A0}$ x 100

 A_0 = Absorbance of control

 A_1 = Absorbance of extract.

RESULT AND DISCUSSION

Qualitative phytochemical analysis

Photo plate 2. Test of Flavonoids

Photo plate 3. Test for phenol

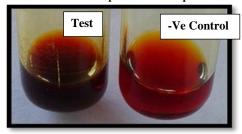


Photo plate 4. Test for alkaloid

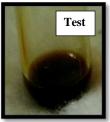


Photo plate 5. Test for tannin

Antioxidant activity of Ixora coccinea plant extract by H_2O_2 method:

Hydrogen peroxide Scavenging antioxidant activity of ethanolic leaf, stem and flower extract as shown in table no. 2, 3 and 4 resp. used for absorbance and % inhibition was calculated by using its formula.

Table No. 5. Result of Hydrogen peroxide scavenging antioxidant activity of Ixora coccinea plant extract

Concentration	Leaf %	Stem %	Flower %
(µg/ml)	inhibition	inhibition	Inhibition
100	22.70	33.10	24.60
200	41.40	48.00	51.50
300	54.00	58.00	59.10
400	70.70	76.00	78.00
500	87.40	84.40	83.90

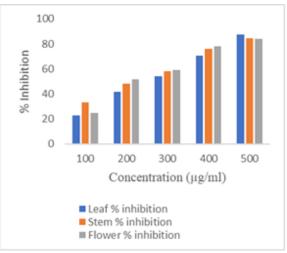


Figure. 1. Graph of Hydrogen peroxide scavenging antioxidant activity of Ixora coccinea plant extract

CONCLUSION

After observing the result of antioxidant activity of leaf, stem and flower of Ixora coccinea as shown in table 5 and figure 1. we came to conclusion that the plant showed good antioxidant activity. Each part of this plant has medicinal property thus we should proceed for the formulation of some herbal product and should conduct its clinical trials.

REFERENCES

- 1. Ajaykumar Surana. In vitro and in vivo antioxidant activity of Ixora coccinea. *Journal of medicinal plant research*. 2013; 7(41): pp 3071-3075.
- 2. Dharmasiri MG, Ratnasooriya, WD, Thabrew MI (2002): Anti-inflammatory activity of decoctions of leaves and stems of Anisomeles indica at preflowering and flowering stages. J Pharm Biol 46: 433–439.
- 3. H. Sumathy, J. Sangeetha, K. Vijayalakshmi, (2011), Chromatographic fingerprint analysis of Ixora coccinea methanolic flower extract, International Journal of Pharmaceutical Sciences and Drug Research. 2011; Vol. No. 3, pp. 327-330.
- 4. Poornima Shyam P. Suresh P. K. Comparative analysis of three leaf extracts of ixora coccinea Linn. For their protective and anti- oxidant potentials and correlation with analytical data. International Journal of Pharma and Bio Sciences. 2013; Vol. No.4, pp. 937 949.

Sneha G. Nair et.al. Antioxidant activity of leaf, stem and flower of ixora coccinea plants by using hydrogen peroxide scavenging assays

- 5. Vikram R Jadhav, Sneha G Nair et. al., Mathematical Treatment to Understanding the Concentration Terms. International Journal of Research and Review. 2019; 6 (1): pp 172-175.
- 6. S. G. Nair et. al., Ixora coccinea: Study of Phytochemical Parameters and Antioxidant Activity. Int. J. Inn. Res. Sci. Eng. and Tech. 2018; 7 (8): pp 14.
- 7. S.G Nair, V.R Jadhav, S. S Bakare. A Remedy against dandruff causing Malassezia furfur using Ixora coccinea: A cost Effective Herbal Approach. *Int J Ayu Pharm Chem.* 2018; 9 (2): pp 271-282.
- 8. W.D. Ratnasooriya, S.A. Deraniyagala, et. al., Anti-inflammatory Activity of the Aqueous Leaf Extract of Ixora coccinea. Pharmaceutical Biology. 2005; Vol. 43, No. 2, pp. 147–152

How to cite this article: Nair SG, Jadhav VR, Rayate MM et.al. Antioxidant Activity of leaf, stem and flower of Ixora coccinea plants by using hydrogen peroxide scavenging assays. International Journal of Research and Review. 2020; 7(4): 133-136.
