

Certificate of 相ublication

The Editorial Board of Vidyabharati International Interdisciplinary A.search Journal (ISSN 2319-4979) is hereby awarding this Certificate to
S. R. Kushare, A. M. Takate and D.P.Patil
is recognition of the publication of the paper entitled

COMPARISON BETWEEN LAPLACE, ELZAKI AND MAHGOUB TRANSFORMS FOR SOLVING SYSTEM OF FIRST ORDER FIRST DEGREE DIFFERENTIAL EQUATIONS

Published in Special Issue - International Virfual Conference on "Innovation in Multidisciplinary Studies-IVCIMS 2021" [August 04-05, 2021] Page No 139-144. (hHp://www.viiri.org/specialissues/SP12/SP12.himl)

Certificate of 羽articipation

This certificate of participation is given to

\author{

- Mr. $^{\text {Ms./Dr. }}$ S. R. Kushare ${ }^{1}$, A. M. Takate ${ }^{2}$ and D.P.Patil ${ }^{3}$
 1,2 Department of Mathematics,K.K.W. Arts, Science \& Commerce College, Pimpalgoan(B.) Niphad, Nashik ..tment.of Mathematics K.......................lege, Gangapur Road, Nashik
} for attending International Virtual Conference on Innovation in Multidisciplinary Studies-IVCIMS 2021- 04-05 August 2021.

She/he also presented a paper entitled

COMPARISON BETWEEN LAPLACE, ELZAKI AND

 MAHGOUB TRANSFORMS FOR SOLVING SYSTEM OF FIRST ORDER FIRST DEGREE DIFFERENTIAL EQUATIONS

Conference Chair

Conference Secretary

COMPARISON BETWEEN LAPLACE, ELZAKI AND MAHGOUB TRANSFORMS FOR

 SOLVING SYSTEM OF FIRST ORDER FIRST DEGREE DIFFERENTIAL EQUATIONSS. R. Kushare ${ }^{1}$, A. M. Takate ${ }^{2}$ and D.P.Patil
${ }^{1,2}$ Department of Mathematics,K.K.W. Arts, Science \& Commerce College, Pimpalgoan(B.) Niphad, Nashik
${ }^{3}$ Department of Mathematics, K.T.H.M. College, Gangapur Road, Nashik
${ }^{1}$ sachinmath86@gmail.com , ${ }^{2}$ archanamath80@yahoo.com, ${ }^{3}$ sdinkarpatil95@gmail.com

Abstract

In this paper we discuss some relationship between Laplace transform, Elzaki transform and Mahgoub Transforms. We solve first order ordinary differential equations using both transforms and show that Elzaki transform and Mahgoub transform are closely connected with the Laplace transform.

Keywords: Laplace transform,Sumudu transform, Elzaki Transform, Mahgoub Transforms Differential equations.

1. Introduction

Recently, In 2016 Mahgob introduced a useful technique for solving ordinary \& partial differential equations in the time domain [1]. Hassan Eltayeb, introduced some relationship between Sumudu and Laplace transforms, further; for the comparison purpose and applied both transforms to solve differential equations to see the differences and similarities[2]. In 2016 , P.R.Bhadane observed in that the new method using Elzaki transform was presented to solve system of homogeneous and non-homogeneous linear differential equations of first order and first degree with constant coefficients and satisfying some initial conditions. The solution obtained for the system of homogeneous and non-homogeneous linear differential equations of first order and first degree is also discussed. These results prove that the Elzaki transform new method is quite capable, well appropriate to solve such types of problems[5].

Recently In 2016 Abdelbagy A. Alshikh, Mohand M. Abdelrahim Mahgob discussed some relationship between Laplace transform and the new two transform called ELzaki transform and Aboodh transform and solved first and second order ordinary differential equations using both transforms, and show that ELzaki transform and Aboodh transform are closely connected with the Laplace transform[3]. In 2007 , Jun Zhang discussed An algorithm based on Sumudu transform was developed. The algorithm can
be implemented in computer algebra systems like Maple. It can be used to solve differential equations of special form[7]. In 2010, Hassan Eltayeb and Adem Kılicman introduced some relationship between Sumudu and Laplace transforms, further; for the comparison purpose and applied both transforms to solve differential equations to see the differences and similarities. Finally, he
provide some examples regarding to second order differential equations with non constant coefficients as special case[8].
In this paper, the basic theory of solutions of system of linear differential equations of first order and first degree by Laplace transform, Elzaki transform and Mahgoub Transforms are discussed and it is showed that the three methods are powerful and efficient to find the solution of system of linear differential equations of first order and first degree with constant coefficient and satisfying some initial conditions.

2. Definitions and Standard Results

2.1 The Laplace Transform:

Definition : If $f(t)$ is a function defined for all positive values of t,then the Laplace Transform is defined as
$\mathrm{L}[\mathrm{f}(\mathrm{t})]=\mathrm{F}(\mathrm{s})=\int_{0}^{\infty} e^{-s t} f(t) d t$
Provided that the integral exists.Here the parameter s is a real or complex number. The corresponding inverse Laplace transform is that the integral exists.Here the parameter s is a real or complex number.The corresponding inverse Laplace transform is
$L^{-1}[F(s)]=f(t)$.Here $\mathrm{f}(\mathrm{t})$ and $\mathrm{F}(\mathrm{s})$ are called as pair of Laplace transforms.
2.1.1 Laplace Transform of some functions :
(i) $\quad L(1)=\frac{1}{s}=F(s)$

Inversion Formula : $L^{-1}\left(\frac{1}{s}\right)=1=f(t)$
(ii) $L\left(t^{n}\right)=\frac{n!}{s^{n+1}}=F(s)$

Inversion Formula : $L^{-1}\left(\frac{1}{s^{n+1}}\right)=\frac{t^{n}}{n!}=f(t)$
(iii) $L\left(e^{a t}\right)=\frac{1}{s-a}=F(s)$

Inversion Formula : $L^{-1}\left(\frac{1}{s-a}\right)=e^{a t}=f(t)$
(iv) $\quad L(\sin (a t))=\frac{a}{s^{2}+a^{2}}=F(s)$

Inversion
Formula
$L^{-1}\left(\frac{1}{s^{2}+a^{2}}\right)=\frac{\sin (a t)}{a}=f(t)$
(v) $\quad L(\cos (a t))=\frac{s}{s^{2}+a^{2}}=F(s)$

Inversion
Formula
$L^{-1}\left(\frac{s}{s^{2}+a^{2}}\right)=\cos (\mathrm{at})=f(t)$
2.1.2 Laplace Transform of derivatives :
(i) $L\left[f^{\prime}(t)\right]=s F(s)-f(0)$
(ii) $L\left[f^{\prime \prime}(t)\right]=s^{2} F(s)-s f(0)-f^{\prime}(0)$

2.2 The Elzaki Transform:

Definition :
Over the set of functions, $=\left\{f(t) / \exists M, \tau_{1}, \tau_{2}>0,|f(t)|<M e^{\frac{|t|}{\tau_{j}}}\right.$, if $\left.t \in(-1)^{j} \times[0, \infty)\right\}$, the Elzaki transform is defined by
$E[f(t)]=T(u)=u \cdot \int_{0}^{\infty} f(t) e^{-\frac{t}{u}} d t, t \geq 0, K 1 \leq u \leq K 2, \mathbf{o} \leq \boldsymbol{t} \leq \infty$
Elzaki Transform of some functions :
i) $\quad E(1)=u^{2}=T(u)$

Inversion Formula : $E^{-1}\left(u^{2}\right)=1=f(t)$
ii) $\quad E\left(t^{n}\right)=n!\cdot u^{n+2}=T(u)$

Inversion Formula : $E^{-1}\left(u^{n+2}\right)=\frac{t^{n}}{n!}=f(t)$
iii) $\quad E\left(e^{a t}\right)=\frac{u^{2}}{1-a u}=T(u)$

Inversion Formula : $E^{-1}\left(\frac{u^{2}}{1-a u}\right)=e^{a t}=f(t)$
iv) $E(\sin a t)=\frac{a u^{8}}{1+a^{2} u^{2}}=T(u)$

Inversion

Formula
$E^{-1}\left(\frac{u^{8}}{1+a^{2} u^{2}}\right)=\frac{\operatorname{sinat}}{a}=f(t)$
v) $\quad E(\cos (a t))=\frac{u^{2}}{1+a^{2} u^{2}}=T(u)$

Inversion Formula
$E^{-1}\left(\frac{u^{2}}{1+a^{2} u^{2}}\right)=\cos (a t)=f(t)$
Elzaki Transform of derivatives :
(i) $E\left[f^{\prime}(t)\right]=\frac{T(u)}{u}-u f(o)$
(i) $E\left[f^{\prime \prime}(t)\right]=\frac{T(u)}{u^{2}}-f(0)-u . f^{\prime}(0)$

2.3 Mahgoub Transform:

Definition :
A new transform called the Mahgoub transform defined for function of exponential order we consider functions in the set A defined by :
$A=\left\{f(t) / \exists M, \tau_{1}, \tau_{2}>0,|f(t)|<M e^{\left.\frac{\mid t t}{\tau_{j}}, \text { if } t \in(-1)^{j} \times[0, \infty)\right\}}\right.$
For a given function in the set A , the constant M must be finite number $, k_{1}, k_{2}$ may be finite or infinite. The Mahgoub transform denoted by the operator $M($.$) defined by the integral$ equations
$\mathrm{M}[\mathrm{f}(\mathrm{t})]=H$
(v) $=v \int_{0}^{\infty} e^{-v t} f(t) d t . t \geq 0, k_{1} \leq v \leq k_{2}$.

Mahgoub Transform of some functions :
i) $\quad M(1)=1=H(v)$

Inversion Formula : $M^{-1}(1)=1=f(t)$
ii) $\quad M\left(\frac{t^{n}}{n!}\right)=\frac{1}{v^{n}}=H(v)$

Inversion Formula : $M^{-1}\left(\frac{n!}{v^{n}}\right)=t^{n}=f(t)$
iii) $\quad M\left(e^{a t}\right)=\frac{v}{v-a}=H(v)$

Inversion Formula : $M^{-1}\left(\frac{v}{v-a}\right)=e^{a t}=f(t)$
iv) $\quad M($ sinat $)=\frac{a v}{v^{2}+a^{2}}=H(v)$
Inversion
Formula
$M^{-1}\left(\frac{v}{v^{2}+a^{2}}\right)=\frac{\operatorname{sinat}}{a}=f(t)$
v) $\quad M(\cos (a t))=\frac{v^{2}}{v^{2}+a^{2}}=H(v)$

Inversion Formula
$M^{-1}\left(\frac{v^{2}}{v^{2}+a^{2}}\right)=\cos (a t)=f(t)$
Mahgoub Transform of derivatives :
(i) $M\left[f^{\prime}(t)\right]=v H(v)-v f(0)$
(i) $M\left[f^{\prime \prime}(t)\right]=v^{2} H(v)-v f^{\prime}(0)-v^{2} f(0)$

3.Application:

In this section, the effectiveness and the usefulness of Laplace, Elzaki and Mahgoub transform technique are demonstrated by finding exact solution of a system of homogeneous and non homogeneous Linear differential equations of first order and first degree with constant coefficients and satisfying some initial conditions.

Example : (1) Find the solutions of the system of equations
$d x / d t+y=2$ cost
(4)
$d y / d t-x=1$
(5)

$$
\text { With initial conditions } x(0)=
$$

-1 and $y(0)=1$
Solution: Applying the Laplace transform of
both sides of Eq. (4) and
$L[d x / d t]+L[y]=2 L[$ cost $]$
$L[d y / d t]-L[x]=L[1]$
Since $L[x(t)]=F_{1}(s)$ and $L[y(t)]=F_{2}(s)$
$s F_{1}(s)-x(0)+F_{2}(s)=2 /\left(s^{2}+1\right)$
$s F_{2}(s)-y(0)+F_{1}(s)=1 / s$

Solving these equations for $F_{1}(s)$ and $F_{2}(s)$; $F_{1}(s)=2 s^{2} /\left(s^{2}+1\right)^{2}-1 / s\left(s^{2}+1\right)-1 /\left(s^{2}+1\right)-s /\left(s^{2}+1\right)$
$F_{2}(s)=2 s /\left(s^{2}+1\right)^{2}+s /\left(s^{2}+1\right)$

Appling Inverse Laplace transforms.
Thus required solution of given differential equations are
$x(t)=t \cos t-1$ and $y(t)=t \sin t+$ cost

2: Applying the Elzaki transform of both sides of Eq. (4) and (5)
$E[d x / d t]+E[y]=2 E[\cos t]$
$E[d y / d t]-E[x]=E[1]$
Since $E[x(t)]=T_{1}(u)$ and $E[y(t)]=T_{2}(u)$
$T_{1}(u) / u-u x(0)+T_{2}(u)=2 u^{2} / 1+u^{2}$
$T_{2}(u) / u-u y(0)+T_{1}(u)=u^{2}$

Solving these equations for $T_{1}(u)$ and $T_{2}(u)$
Then Appling Inverse Elzaki transforms.
Thus required solution of given differential equations are
$x(t)=t$ cost -1 and $y(t)=t \sin t+$ cost
3: Applying the Mahgoub transform of both sides of Eq. (4) and (5)
$M[d x / d t]+M[y]=2 M[$ cost $]$
$M[d y / d t]-M[x]=M[1]$

Since
$M[x(t)]=H_{1}(v)$ and $M[y(t)]=H_{2}(v)$
$v H_{1}(v)-v x(0)+H_{2}(v)=2 v^{2} /\left(v^{2}+1\right)$
$v H_{2}(v)-v y(0)+H_{1}(v)=1$
Solving these equations for $H_{1}(v)$ and $H_{2}(v)$ Then Appling Inverse Mahgoub transforms.
Thus required solution of given differential equations are
$x(t)=t \cos t-1$ and $y(t)=t \sin t+$ cos t
Example: (2) Find the solutions of the system of equations
$d x / d t+\alpha y=0$
(21)
$d y / d t-\alpha x=0$
With initial conditions $\mathrm{x}(0)=c_{1}$ and $\mathrm{y}(0)=$ c_{2}, where c_{1}, c_{2} are arbitrary constants.
Solution: Applying the Laplace transform of both sides of Eq. (21) and (22),
$L[d x / d t]+\alpha L[y]=0$
$L[d y / d t]-\alpha L[x]=0$
Since $L[x(t)]=F_{1}(s)$ and $L[y(t)]=F_{2}(s)$ $s F_{1}(s)-c_{1}+\alpha F_{2}(s)=0$
$s F_{2}(s)-c_{2}-\alpha F_{1}(s)=0$

Solving these equations for $F_{1}(s)$ and $F_{2}(s)$; $F_{1}(s)=\frac{c_{1} s-c_{2} \alpha}{s^{2}+\alpha^{2}}$ and $F_{2}(s)=\frac{c_{1} \alpha+c_{2} s}{s^{2}+\alpha^{2}}$

Appling Inverse Laplace transforms, we get general solution of given differential equations are
$x(t)=c_{1} \cos \alpha t-c_{2} \sin \alpha t$ and $y(t)=c_{1} \sin \alpha t+c_{2} \cos \alpha t$
(27) $\quad \frac{d x}{d t}+y=e^{t}$

Squaring and adding, we get
$x^{2}+y^{2}=c_{1}{ }^{2}+c_{2}{ }^{2} \quad$ which represents a circle.
2: Applying the Elzaki transform of both sides of Eq. (21) and (22),
$E[d x / d t]+\alpha E[y]=0$
$E[d y / d t]-\alpha E[x]=0$

Since $E[x(t)]=T_{1}(u)$ and $E[y(t)]=T_{2}(u)$
$T_{1}(u) / u-u x(0)+\alpha T_{2}(u)=0$
$T_{2}(u) / u-u y(0)-\alpha T_{1}(u)=0$
(32)

Solving these equations for $T_{1}(u)$ and $T_{2}(u)$
Then Appling Inverse Elzaki transforms.
Thus required solution of given differential equations are
equations are
$x(t)=c_{1} \cos \alpha t-c_{2} \sin \alpha t$ and $y(t)=c_{1} \sin \alpha t+\underbrace{F_{1}(s)=\left(s^{3}+s-1\right) / s^{2}(s-1)^{2}(s+1)}_{\iota_{2} \text { cusuc }}$
3: Applying the Mahgoub transform of both sides of Eq. (21) and (22),
$M[d x / d t]+\alpha M[y]=0$
$M[d y / d t]-\alpha M[x]=0$

Since
$M[x(t)]=H_{1}(v)$ and $M[y(t)]=H_{2}(v)$
$v H_{2}(v)-v y(0)-\alpha H_{1}(v)=0$

Solving these equations for $H_{1}(v)$ and $H_{2}(v)$
Then Appling Inverse Mahgoub transforms.
Thus required solution of given differential equations are

$$
\begin{equation*}
F_{2}(s)=1-2 s / s(s-1)^{2}(s+1) \tag{33}
\end{equation*}
$$

Since $L[x(t)]=F_{1}(s)$ and $L[y(t)]=F_{2}(s)$
$s F_{1}(s)-x(0)+F_{2}(s)=1 /(s-1)$
$s F_{2}(s)-y(0)-F_{1}(s)=-1 / s^{2}$
(44)

Solving these equations for $F_{1}(s)$ and $F_{2}(s)$;

Appling Inverse Laplace transforms.
Thus required solution of given differential equations are
$x(t)=e^{t} / 2-1 / 2 \cos t-1 / 2 \sin t \quad$ and $y(t)=-1+e^{t} / 2+1 / 2 \cos t-1 / 2 \sin t$ (47)

2: Applying the Elzaki transform of both sides of Eq. (39) and (40),
$E[d x / d t]+E[y]=E\left[e^{t}\right]$
$E[d y / d t]-E[x]=-E[t]$

Since $E[x(t)]=T_{1}(u)$ and $E[y(t)]=T_{2}(u)$
$T_{1}(u) / u-u x(0)+T_{2}(u)=u^{2} /(1-u)$
$T_{2}(u) / u-u y(0)-T_{1}(u)=-u^{3}$
$x(t)=c_{1} \cos \alpha t-c_{2} \sin \alpha t$ and $y(t)=c_{1} \sin \alpha t+\xi_{3}$ orving these equations for $T_{1}(u)$ and $T_{2}(u)$
Then Appling Inverse Elzaki transforms.
Thus required solution of given differential equations are
Example : (3) Find the solutions of the system of equations
$x(t)=e^{t} / 2-1 / 2 \cos t-1 / 2 \sin t$ and $y(t)=$ equâtions ${ }^{\text {aree }} 1 / 2 \cos t-1 / 2 \sin t$

3: Applying the Mahgoub transform of both sides of Eq. (39) and (40),
$M[d x / d t]+M[y]=M\left[e^{t}\right]$
$M[d y / d t]-M[x]=-M[t]$

Since
$M[x(t)]=H_{1}(v)$ and $M[y(t)]=H_{2}(v)$
$v H_{1}(v)-v x(0)+H_{2}(v)=v /(v-1)$
$v H_{2}(v)-v y(0)-H_{1}(v)=-1 / v$

Solving these equations for $H_{1}(v)$ and $H_{2}(v)$ Then Appling Inverse Mahgoub transforms.
Thus required solution of given differential equations are
$x(t)=e^{t} / 2-1 / 2 \operatorname{cost}-1 / 2 \operatorname{sint}$ and $y(t)=-1+e^{t} / 2+1 / 2 \operatorname{cost}-1 / 3 \sin$ Applying the Mahgoub transform of both
Example: (4) Find the solutions of the system of equations
$\frac{d x}{d t}=x+y$
$\frac{d y}{d t}=2 x+4 y$

With initial conditions $x(0)=1$ and $y(0)=2$
Solution: Applying the Laplace transform of both sides of Eq. (58) and (59),
$L[d x / d t]=L[x]+L[y]$
$L[d y / d t]=2 L[x]+4 L[y]$
Since $L[x(t)]=F_{1}(s)$ and $L[y(t)]=F_{2}(s)$
$s F_{1}(s)-x(0)=F_{1}(s)+F_{2}(s)$
$s F_{2}(s)-y(0)=2 F_{1}(s)+4 F_{2}(s)$

Solving these equations for $F_{1}(s)$ and $F_{2}(s)$ and Appling Inverse Laplace transforms, we get Thus required solution of given differential

$$
\begin{equation*}
x(t)=e^{2 t}-2 e^{-t}-2 t+1 \text { and } y(t)=e^{2 t}+4 e^{-t}+2 t-3 \tag{52}
\end{equation*}
$$

2: Applying the Elzaki transform of both sides of Eq. (58) and (59), $E[d x / d t]=E[x]+E[y]$
$E[d y / d t]=2 E[x]+4 E[y]$
Since $E[x(t)]=T_{1}(u)$ and $E[y(t)]=T_{2}(u)$
$T_{1}(u) / u-u x(0)=T_{1}(u)+T_{2}(u)$
$T_{2}(u) / u-u y(0)=2 T_{1}(u)+4 T_{2}(u)$

Solving these equations for $T_{1}(u)$ and $T_{2}(u)$
Then Appling Inverse Elzaki transforms.
Thus required solution of given differential equations are
$x(t)=e^{2 t}-2 e^{-t}-2 t+1$ and $y(t)=e^{2 t}+4 e^{-t}+2 t-3$ sides of Eq. (58) and (59),
$M[d x / d t]=M[x]+M[y]$
$M[d y / d t]=2 M[x]+4 M[y]$

Since

$$
\begin{equation*}
M[x(t)]=H_{1}(v) \text { and } M[y(t)]=H_{2}(v) \tag{58}
\end{equation*}
$$

$$
\begin{equation*}
v H_{1}(v)-v x(0)=H_{1}(u)+H_{2}(u) \tag{59}
\end{equation*}
$$

$v H_{2}(v)-v y(0)=2 H_{1}(u)+4 H_{2}(u)$
Solving these equations for $H_{1}(v)$ and $H_{2}(v)$ Then Appling Inverse Mahgoub transforms.
Thus required solution of given differential equations are
$x(t)=e^{2 t}-2 e^{-t}-2 t+1$ and $y(t)=e^{2 t}+4 e^{-t}+2 t-3$

4. Conclusion

The main goal of this paper is to conduct Comparison between Laplace, Elzaki and Mahgoub Transforms for Solving system of First order First Degree Differential Equations .The three methods are powerful and
efficient and Elzaki and Mahgoub Transforms is a convenient tool for solving Solving system of First order First Degree differential equations in the time domain without the need for performing an inverse Elzaki transform and inverse a Mahgoub transform. Therefore connection of Elzaki
transform and a Mahgoub transform with Laplace transform goes much deeper.

5. Acknowledgements

The authors grateful thanks to Principal Dr.
D.B.Shinde for their guidance in the preparation of his revised paper.

References

1. Abdelbagy A. Alshikh, Mohand M. Abdelrahim Mahgob. A Comparative Study Between Laplace Transform and Two New Integrals "ELzaki" Transform and "Aboodh" Transform. Pure and Applied Mathematics Journal. Vol. 5, No. 5, 2016, pp. 145-150.
2. Hassan Eltayeb and AdemKilicman, (2010), A Note on the Sumudu Transforms and differential Equations, Applied Mathematical Sciences, VOL, 4, no. 22, 1089-1098.
3. Mohand M. Abdelrahim Mahgoub., "The New Integral Transform Mahgoub Transform",
4. Advances in Theoretical and Applied Mathematics, Vol.11, No.4, pp. 391 - 398, 2016.
5. G.K.Watugala, simudu transform- a new integral transform to Solve differential equation and control engineering problems .Math .Engrg Induct 6 (1998), no 4,319329.
6. P.R. Bhadane and K.P.Ghadle(2016), Application of Elzaki Transform to System of

Linear Differential Equations,the international Journal ,RJSITM, Volume: 06.
7. A. Kilicman and H. E. Gadain. (2009), An application of Double Laplace transform and Sumudu transform, Lobachevskii J.Math.30(3),pp.214-223. http://dx.doi.org/10.1134/s 1995080209030 044.
8. J. Zhang, Asumudu based algorithm m for solving differential equations, Comp.Sci.Moldova 15(3) (2007), pp - 303313.
9. Hassan Eltayeb and AdemKilicman, (2010), A Note on the Sumudu Transforms and differential
10. Equations, Applied Mathematical Sciences, VOL, 4, no. 22, 1089-1098.
11. Raisinghania, M.D., Integral equations and boundary value problems, S.Chand \& Company, New-Delhi, 2017
12. Polyanin, A.D. and Manzhirov, A.V., Handbook of integral equations, Chapman \& Hall/CRC, 2008.

