Savitribai Phule Pune University

Three Year Degree Course in B. Sc. Computer Science

1) Title of the Course : B. Sc. Computer Science

T. Y. B. Sc. Computer Science Syllabus in the Subject Computer Science (To be implemented from Academic Year 2015-16)

2) Preamble:

B. Sc. Computer Science is a systematically designed three year course that prepares the student for a career in Software Industry. The syllabus of Computer Science subject along with that of the three allied subjects (Mathematics, Electronics and Statistics) forms the required basics for pursuing higher studies in Computer Science. The Syllabus also develops requisite professional skills and problem solving abilities for pursuing a career in Software Industry.

3) Introduction:

At **first year of under-graduation** basic foundation of two important skills required for software development is laid. A course in programming and a course in database fundamentals forms the preliminary skill set for solving computational problems. Simultaneously two practical courses are designed to supplement the theoretical training. The second practical course also includes a preliminary preparation for website designing in the form of HTML programming.

Along with Computer Science two theories and one practical course each in Statistics, Mathematics and Electronics help in building a strong foundation.

At **second year under-graduation**: The programming skills are further strengthened by a course in Data structures and Object oriented programming. The advanced topics in Databases and preliminary software engineering form the second course. Two practical courses alongside help in hands-on training. Students also undertake a mini project using software engineering principles to solve a real world problem. Simultaneously two theories and one practical course each in Mathematics and Electronics help in strengthening problem solving abilities.

At **third year under-graduation:** Six theory papers in each semester and practical courses cover the entire spectrum of topics necessary to build knowledge base and requisite skill set. Third practical course also includes project work which gives students hands on experience in solving a real world problem.

Objectives:

- To develop problem solving abilities using a computer
- To build the necessary skill set and analytical abilities for developing computer based solutions for real life problems.
- To imbibe quality software development practices.
- To create awareness about process and product standards
- To train students in professional skills related to Software Industry.
- To prepare necessary knowledge base for research and development in Computer Science
- To help students build-up a successful career in Computer Science

4) Eligibility:

Higher Secondary School Certificate (10+2) Science with Mathematics or its equivalent Examination as per Savitribai Phule Pune University eligibility norms.

Note: Admissions will be given as per the selection procedure / policies adopted by the respective college, in accordance with conditions laid down by Savitribai Phule Pune University. Reservation and relaxation will be as per the Government rules.

5 A) Examination Pattern:

First Year B. Sc. Computer Science Subject : Computer Science

Pattern of Examination: Annual for both Theory and Practical Courses

			Sta	ndard of pas	sing
Paper/ Course No.	Title	Total Number of lectures/practicals per Term	Internal marks out of 20	External marks out of 80	Total marks out of 100
Computer Science Paper I (CS-101)	Problem Solving Using Computers and 'C' Programmin g	Three lectures/Week (Total 80 lectures)	08	32	40 *
Computer Science Paper II CS-102)	File Organizatio n and Fundament al of Databases	Three lectures/Week (Total 80 lectures)	08	32	40 *
Computer Science Practical Paper I (CS-103)	Computer Science Practical Paper I	25 Practical slots of 4 lectures each	08	32	40 *
Computer Science Practical Paper II (CS-104)	Computer Science Practical Paper II	25 Practical slots of 4 lectures each	08	32	40 *

* Subject to compulsory passing in external examination and getting minimum 40 marks out of 100

Notes:

1. Total marks: Theory (100 + 100) = 200 marks

2. Total marks per year 200 (Theory) + 100 marks (practical)+ Grade(practical) = 300 marks +Grade

3. Internal marks for theory papers given on the basis of internal assessment tests and for practicals on continuous assessment of lab work.

4. In case of Computer Science Practical Paper II, marks out of 100 will be converted to grades

Marks	Grade
75 And Above	0
65 And Above	А
55 and above	В
50 And above	С

45 And Above	D
40 And Above	E
Below 40 (indicates Failure)	F

Theory examination will be of three hours duration for each theory course. There shall be 5 questions each carrying equal marks. The pattern of question papers shall be:

Question 1	8 sub-questions, each of 2 marks; answerable in 2 -3 lines and
	based
	on entire syllabus
Question	4 out of 5/6– short answer type questions; answerable in 8 – 10
2, 3 ,4 and 5	lines
	mix of theory and problems

Internal examination: Internal assessment of the student by respective teacher will be based on written test, 10 marks each term. The written test shall comprise of objective type questions – Multiple Type Questions, True / False, Definitions, Answer in Two or three line question (Describe/Explain).There shall be 20 questions. Practical: Continuous assessment of Lab work and mini project.

Practical Examination: Practical examination shall be conducted by the respective college at the end of the academic year. Practical examination will be of 3 hours duration for each practical course. Certified journal is compulsory to appear for practical examination. There shall be two expert and two examiners per batch for the practical examination.

No	Paper	Title: Semester I	Title: Semester II
1	Computer Science Paper I	CS-211:Data	CS-221:Object
		Structures using 'C'	Oriented Concepts
			using C++
2	Computer Science Paper II	CS-212: Relational	CS-222:Software
		Database	Engineering
		Management System	
3	Computer Science Paper III	CS-223:Data structures	s Practicals and C++
		Practicals	
4	Computer Science Paper IV	CS-224:Database Prac	ticals &
		Mini Project using Sof	tware Engineering
		techniques	

Second Year B. Sc. (Computer Science) Subject : Computer Science

Pattern of examination: Semester

Theory courses (Sem I: CS-211 and CS212): Semester (Sem II: CS-221 and CS-222): Semester Practical Course (CS-223 and CS-224): Annual

Paper/Course No.	Title	Total Number of Lectures/Practica	Standard Of Passing		
		ls Per Week	Internal marks out of 10 (theory) Out of 20 (practicals)	External marks out of 40 (theory) Out of 80 (practicals)	Total passing marks out of 50 (theory) and out of 100

					(practicals)
The erry Deres I	Data	Four			
Theory Paper I (CS-211)	Data Structures	Four Lectures/per	04	16	20*
(CS 211)	using 'C'	Week (Total 48		10	20
	weiii:8 e	per Semester)			
Theory Paper II	Relational	Four			
(CS-212)	Database	Lectures/per	04	16	20*
	Managem	Week (Total 48			
	ent	per Semester)			
	System				
Theory Paper I	Object	Four			
(CS-221)	Oriented	Lectures/per	04	16	20*
	Concepts	Week (Total 48			
Theory Depen II	using C++ Software	per Semester) Four			
Theory Paper II (CS-222)	Engineeri	Lectures/per	04	16	20*
(CS-222)	ng	Week (Total 48	04	10	20*
	115	per Semester)			
Practical paper I	Data	Practicals of 4			
(CS 223) (First &	structures	lectures each	08	32	40*
Second	Practicals	25 practicals /			
Semester)	and C++	year)			
	Practicals				
Practical paper II	Database	Practicals of 4			
(CS 224) (First &	Practicals	lectures each	08	32	40**
Second	& Mini	25 practicals /			
Semester)	Project	year)			
	using Software				
	Engineeri				
	ng				
	technique				
	s				

 \ast Subject to compulsory passing in external examination and getting minimum 20 marks out of 50

 $\ast\ast$ Subject to compulsory passing in external examination and getting minimum 40 marks out of 100

Notes:

1. Total marks: Theory for each semester (50 + 50) = 100 marks

2. Total marks per year 200 (Theory) + 100 marks (practicals)+Grade(practical)

= 300 marks+Grade

3. Internal marks for theory papers given on the basis of Continuous internal Assessment

Theory examination will be of two hours duration for each theory course. There

c + questions ea	frying equal marks. The pattern of question papers shan by	<i>.</i>
Question 1	10 sub-questions, each of 1 mark; answerable in 2 -3	10 Marks
	lines and based on entire syllabus	
Question	Sub-questions carrying 5 marks (2 out of 3)	10 Marks
2, 3		
Question 4	Sub-questions carrying marks depending on their	10 Marks
	complexity with options	

shall be 4 questions carrying equal marks. The pattern of question papers shall be:

Internal examination: Internal assessment of the student by respective teacher will be based on written test, 10 marks each Semester. The written test shall comprise of objective type questions – Multiple Type Questions, True / False, Definitions, Answer in Two or three line question (Describe/Explain) There shall be 20 questions.

Practicals: Continuous assessment of practical performance

Practical Examination: Practical examination shall be conducted at the respective college at the end of the academic year. Practical examination will be of 3 hours duration. Continuous assessment of practical performance should be using a Lab Book specifically designed for the purpose. Certified Lab book is compulsory to appear for practical examination. There is no need of attaching program printouts to the Lab Book. There shall be two experts and two examiners per batch for the practical examination. One of the examiners will be external.

No	Paper	Title: Semester I	Title: Semester II
1	Computer Science Paper I	CS-331:System Programming	CS-341:Operating System
2	Computer Science Paper II	CS-332:Theoretical Computer Science	CS-342:Compiler Construction
3	Computer Science Paper III	CS-333:Computer Networks-I	CS-343:Computer Networks-II
4	Computer Science Paper IV	CS-334: Internet Programming- I	CS-344:Internet Programming- II
5	Computer Science Paper V	CS-335:Programming in Java-I	CS-345:Programming in Java-II
6	Computer Science Paper VI	CS-336:Object Oriented Software Engineering	CS-346:Computer Graphics
7	Computer Science Paper VII	CS-347:Practicals Based on CS-331	and CS341 – Sem I & Sem II
8	Computer Science Paper VIII	CS-348:Practicals Based on CS-335 Computer Graphics using Java	5 and CS-344 – Sem I & Sem II and
9	Computer Science Paper IX	CS-349:Practicals Based on CS-334	and CS-344 – Sem I & Sem II and
		Project	

Third Year B. Sc. (Computer Science)

Pattern of examination: Semester Theory courses: (Sem III: CS-331-CS-336): Semester (Sem IV: CS-341-CS-346): Semester Practical Course: (CS-347-CS-349): Annual

Theory Papers					
Paper/Course No.	Title	Total Number of	Standard Of I	Passing	
		Lectures/Practica ls Per Week	Internal marks out of 10 (theory) Out of 20 (practicals)	External marks out of 40 (theory) Out of 80 (practicals)	Total passing marks out of 50 (theory) and out of 100 (practicals)
SEM III	1	1		-	
Theory Paper I (CS-331)	System Program min g	48	04	16	20*
Theory Paper II (CS-332)	Theoretica l Computer Science	48	04	16	20*
Theory Paper III (CS-333)	Computer Networks-	48	04	16	20*
Theory Paper IV (CS-334)	Internet Programm ing I	48	04	16	20*
Theory Paper V (CS-335)	Program min g in Java- I	48	04	16	20*
Theory Paper V (CS-336)	Object Oriented Software Engineeri ng	48	04	16	20*
SEM IV					
Theory Paper I (CS-341)	Operating System	48	04	16	20*
Theory Paper II (CS-342)	Compiler Constructi on	48	04	16	20*
Theory Paper III (CS-343)	Computer Networks- II	48	04	16	20*
Theory Paper IV (CS-344)	Internet Programm ing II	48	04	16	20*
Theory Paper V	Program min				

(CS-345)	g in Java- II	48	04	16	20*
Theory Paper V	Computer				
(CS-346)	Graphics	48	04	16	20*
Practical Papers		I			
Practical paper I	Practicals	Practicals of 4			
CS 347	Based on	lectures each	08	32	40**
(Semester III	CS-331	25 practicals /			
& IV)	and	year)			
	CS-341 –				
	Sem I &				
	Sem II				
Practical paper II CS 348	CS- 348:Practi	Practicals of 4	08	32	40**
(Semester III	cals	lectures each	08	32	40***
& IV)	Based	25 practicals / year)			
	on CS-	year)			
	335				
	and CS-				
	345				
	– Sem I &				
	Sem II				
	and				
	Computer				
	Graphics using				
	OpenGL				
Practical paper I	CS-	Practicals of 4			
CS 349	349:Practi	lectures each	08	32	40**
(Semester III	С	25 practicals /	-		
à IV)	als Based	year)			
	on CS-				
	334				
	and CS-				
	344				
	– Sem I &				
	Sem II and				
	Project				
L	1 10,000	I	L	1	

* Subject to compulsory passing in external examination and getting minimum 20 marks out of 50

 $\ast\ast$ Subject to compulsory passing in external examination and getting minimum 40 marks out of 100

Notes:

1. Total marks: Theory for each semester $(50 \times 6) = 300$ marks

2. Total marks per year 600 (Theory) + 300 marks (practicals) = 900 marks

3. Internal marks for theory papers given on the basis of continuous internal assessment

Theory examination will be of two hours duration for each theory course. There shall be 4 questions carrying equal marks. The pattern of question papers shall be: **Theory examination** will be of two hours duration for each theory course. There

shall be 4 questions carrying equal marks. The pattern of question papers shall be:

e questions e	e i questions carifing equal marks. The partern of question papers shan be.					
Question 1	10 sub-questions, each of 1 mark; answerable in 2 -3	10 Marks				
	lines and based on entire syllabus					
Question 2, 3	Sub-questions carrying 5 marks (2 out of 3)	10 Marks				
Question 4	Sub-questions carrying marks depending on their complexity with options	10 Marks				

Internal examination: Internal assessment of the student by respective teacher will be based on written test, 10 marks each Semester. The written test shall comprise of objective type questions – Multiple Type Questions, True / False, Definitions, Answer in Two or three line question (Describe/Explain) There shall be 20 questions.

Practicals: Continuous assessment of practical performance

Practical Examination: Practical examination shall be conducted at the respective college at the end of the academic year. Practical examination will be of 3 hours duration. Continuous assessment of practical performance should be using a Lab Book specifically designed for the purpose. Certified Lab book is compulsory to appear for practical examination. There shall be one expert and two examiners per batch for the practical examination. One of the examiners will be external.

5 B) Standard of Passing:

i. In order to pass in the first year theory examination, the candidate has to obtain 40 marks out of 100 in each course. (Minimum 32 marks out of 80 must be obtained in the University Theory Examination.)

ii. In order to pass in the Second Year and Third Year theory examination, the candidate has to obtain 20 marks out of 50 in each course of each semester.

5 C) ATKT Rules:

While going from F.Y.B.Sc. to S.Y.B.Sc. at least 8 courses (out of total 13) should be passed; however all F.Y.B.Sc. courses should be passed while going to T.Y.B.Sc. While going from S.Y.B.Sc. to T.Y.B.Sc., at least 12 courses (out of 22) should be passed (Practical Course at S.Y.B.Sc. will be equivalent to 2 courses).

5 D)Award of Class:

The class will be awarded to the student on the aggregate marks obtained during the second and third year in the principal subject only. The award of the class shall be as follows:

1	Aggregate 70% and above	First Class with Distinction
2	Aggregate 60% and more but less than 70%	First Class
3	Aggregate 55% and more but less than 60%	Higher Second Class
4	Aggregate 50% and more but less than 55%	Second Class
5	Aggregate 40% and more but less than 50%	Pass Class
6	Below 40%	Fail

5 E) External Students: There shall be no external students.

5 F) Setting question papers:

F.Y.B.Sc.: For theory papers I and II annual question papers shall be set by the University of Pune and assessment done at the respective colleges. Questions should be designed to test the conceptual knowledge and understanding of the basic concepts of the subject. For Practical Papers, the Question paper slips will be provided by the University of Pune and assessment done at the respective colleges. **S.Y.B.Sc. and T.Y.B.Sc.:**For theory papers I and II for each semester and also for the annual practical examination question papers set by the University of Pune.

Centralized assessment for theory papers done as per the University instructions. Questions should be designed to test the conceptual knowledge and understanding of the basic concepts of the subject. For Practical Papers: Papers shall be set by the University of Pune and assessment done by the internal examiner and external examiner appointed by University of Pune.

5G)Verification and Revaluation Rules:

As per university Statues and rules for verification and revaluation of marks in stipulated time after declaration of the semester examination result.

6) Course Structure:

Duration: The duration of B.Sc. Computer Science Degree Program shall be three years.

a) All are Compulsory Papers:

F.Y.B.Sc. : 2 Theory + 2 Practical (Annual)
S.Y.B.Sc.: 2 Theory per semester + 2 Practical (Annual)
T.Y.B.Sc.: 6 Theory per semester + 3 Practical (Annual)
b) Question Papers :
F.Y.B.Sc. Theory paper:
University Examination – 80 marks (at the end of 2nd term)
Internal Examination – 20 marks
S.Y / T.Y. - B.Sc. Theory paper:
University Examination – 40 marks (at the end of each term)
Internal Examination – 10 marks
F.Y. / S.Y / T.Y. - B.Sc. Practical Paper:
University Examination – 80 marks (at the end of 2nd term)

c) Medium of Instruction: The medium of instruction for the course shall be English.

7) Equivalence of Previous Syllabus:

Old Course (2008 Pattern)	New Course (2013 Pattern)
CS 331: System Programming & Operating	CS 331 : System Programming
System I	
CS 341: System Programming & Operating	CS 341 : Operating System
System II	
CS 332 : Theoratical Computer Science &	CS 332 : Theoratical Computer Science
Compiler Construction I	
CS 342 : Theoratical Computer Science &	CS 342 : Compiler Construction
Compiler Construction II	
CS 333 :Computer Networks I	CS 333 :Computer Networks I
CS 343 :Computer Networks II	CS 343 :Computer Networks II
CS 334 :Web development and PHP	CS 334 :Internet Programming I
programming I	
CS 344 : Web development and PHP	CS 344 :Internet Programming II
programming II	
CS 335 :Programming in Java I	CS 335 :Programming in Java I
CS 345 :Programming in Java II	CS 345 :Programming in Java II
CS 336 :Object Oriented Software	CS 336 :Object Oriented Software
Engineering	Engineering

CS 346 :Business Applications	CS 346 :Computer Graphics
CS 347: Lab Course I	CS 347: Lab Course I
CS 348:Lab Course II	CS 348:Lab Course II
CS 349: Lab Course III	CS 349: Lab Course III

8) University Terms: Dates for commencement and conclusion for the first and second terms will be declared by the University authorities. Terms can be kept by only duly admitted students. The term shall be granted only on minimum 75 percent attendance at theory and practical course and satisfactory performance during the term.

9) Qualification of Teachers: M.Sc. Computer Science/M.C.A. or equivalent master degree in science with class/grades and NET/SET as per prevailing University/Government /UGC rules.

10) Detail Syllabus with Recommended Books:

SAVITRIBAI PHULE PUNE UNIVERSITY T.Y. B. Sc. COMPUTER SCIENCE SYLLABUS TO BE IMPLEMENTED FROM ACADEMIC YEAR 2015-16 TITLE OF PAPER : Systems Programming Code No. : CS-331

Semester III

Total Lectures : 48

Aim : To understand the design and implementation issues of System programs that play an important role in program development.

Objectives :

- To understand the design structure of a simple editor.
- To understand the design structure of Assembler and macro processor for an hypothetical simulated computer.
- To understand the working of linkers and loaders and other development utilities.
- To understand Complexity of Operating system as a software.

1. Introduction

- 1.1. Types of program System program and Application program.
- 1.2. Difference between system programming and application programming.
- 1.3. Elements of Programming environment Editor, Preprocessor, Assembler, Compiler,
- Interpreter, Linker and Loader, Debugger, Device drivers, Operating System.
- 1.4. Simulation of simple computer smac0 (hypothetical computer) -Memory, Registers,

Condition Codes, Instruction format, Instruction Set, smac0 programs.

2. Editors

2.1 Definition, need/purpose of editor.

- 2.2 Types of editor- Examples ed, sed, VIM & emacs
- 2.3 Structure of editor

3. Assembler

- 3.1 Definition.
- 3.2 Features of assembly language, advantages
- 3.3 Statement format, types of statements Imperative, Declarative, Assembler Directive.
- 3.4 Constants and Literals.
- 3.5 Advanced assembler directives (LTORG, ORIGIN, EQU),
- 3.6 Design of assembler Analysis Phase and Synthesis Phase.
- 3.7 Overview of assembling process
- 3.8 Pass Structure of Assembler One pass, Two pass assembler.
- 3.9 Problems of 1-pass assembler forward reference, efficiency, Table of Incomplete Instructions.
- 3.10 Design of 2-pass Assembler Pass-I and Pass-II
- 3.11 Data structure of 2-pass assembler.
- 3.12. Intermediate Code Need, Forms-variant I and Variant II

4. Macros and Macro Processors

- 4.1 Definition
- 4.2 Macro definition and call
- 4.3 Macro expansion positional and keyword parameters
- 4.4 Design of Data structures to be used for Macro definition and use
- 4.5 Nested macro calls

4.6 Advanced macro facilities – alteration of flow of control during expansion, expansion time variable, conditional expansion, expansion time loops. (with examples)

4.7 Design of macro preprocessor – Design overview, data structure, processing of macro definition and macro expansion (Except algorithms)

[10]

[4]

[2]

[10]

4.8 Macro assembler – Comparison of macro preprocessor and macro assembler. Pass structure of	
macro assembler.	

5. Compiler Design options
5.1 Interpreter - Use of interpreter, definition, Comparison with compiler, Overview of interpretation, Pure and impure interpreter.
5.2 P-code compiler

6. Linker and Loader

6.1 Introduction

6.2 Concept of bindings, static and dynamic binding, translated, linked and load time addresses.6.3 Relocation and linking concept – program relocation, performing relocation, public and external references, linking, binary program, object module.

6.4 Relocatability - nonrelocatable, relocatable, and self relocating programs (no algorithms), Linking for Overlays.

6.5 Object file formats: a.out, ELF, COFF, EXE, PE and COM

7. Debuggers & Development utilities

7.1 Debugging functions and capabilities

7.2 Types of debuggers: visual & console -Case study of ddd(visual) and gdb(console)7.3 Development utilities on UNIX/Linux strip, make, nm, objdump, intermediate files in compilation process etc.

8. Operating System as System Software

8.1 What Operating Systems Do - User View, System View, Defining OS

8.2 Computer System Architecture – Single processor system, Multiprocessor systems, Clustered Systems

8.3 Operating System Operations – Dual mode operation, Timer

8.4 Process Management

8.5 Memory Management

8.6 Storage Management – File system management, Mass storage management, Cashing, I/O systems

8.7 Protection and Security

8.8 Distributed Systems

8.9 Special Purpose System – Real time embedded systems, Multimedia systems, Handheld systems,

8.10 Computer Environment – Traditional computing, Client server computing, Peer to peer Computing

9. System Structure

9.1 Operating System Services

9.2 User Operating-System Interface - Command interpreter, GUI

9.3 System Calls

9.4 Types of System Calls – Process control, File management, Device management, Information maintenance, Communication, Protection

Reference Books:

1. Systems Programming and Operating Systems by D.M.Dhamdhere

(Second Revised Edition). [Chapters: 2, 3, 4, 5, 7]

2. System Software - An introduction to Systems Programming

- Leland L. Beck (Pearson Education) [Chapter: 1]

3. Linkers and Loaders – John R. Levine, Elsevier Moegan Kaufmann[chapter 6]

4. Operating System Concepts - Siberchatz, Galvin, Gagne (8th Edition).[chapter 8, 9]

[6]

[2]

[6]

[6]

SAVITRIBAI PHULE PUNE UNIVERSITY T.Y. B. Sc. COMPUTER SCIENCE SYLLABUS TO BE IMPLEMENTED FROM ACADEMIC YEAR 2015-16 TITLE OF PAPER : Operating Systems Code No. : CS-341

Semester IV

Total Lectures : 48

Aim : To understand the design and implementation issues of Operating System.

Objectives :

- To understand design issues related to process management and various related algorithms
- To understand design issues related to memory management and various related algorithms
- To understand design issues related to File management and various related algorithms

1. Introduction

1.1 Operating System Structure - Simple structure, Layered approach, Micro kernels, Modules

1.2 Virtual Machines - Introduction, Benefits

1.3 System Boot

2. Process Management

- 2.1 Process Concept The process, Process states, Process control block.
- 2.2 Process Scheduling Scheduling queues, Schedulers, context switch

2.3 Operations on Process – Process creation with program using fork(), Process termination

2.4 Interprocess Communication – Shared memory system, Message passing systems.

3. Multithreaded Programming

3.1 Overview

3.2 Multithreading Models

4. Process Scheduling

4.1 Basic Concept – CPU-I/O burst cycle, CPU scheduler, Preemptive scheduling, Dispatcher 4.2 Scheduling Criteria

4.3 Scheduling Algorithms – FCFS, SJF, Priority scheduling, Round-robin scheduling, Multiple queue scheduling, Multilevel feedback queue scheduling 4.4 Thread Scheduling

5. Process Synchronization

5.1 Background

5.2 Critical Section Problem

5.3 Semaphores: Usage, Implementation

5.4 Classic Problems of Synchronization – The bounded buffer problem, The reader writer problem, The dining philosopher problem

6. Deadlocks

6.1 System model

- 6.2 Deadlock Characterization Necessary conditions, Resource allocation graph
- 6.3 Deadlock Prevention
- 6.4 Deadlock Avoidance Safe state, Resource allocation graph algorithm, Banker's Algorithm

6.5 Deadlock Detection

6.6 Recovery from Deadlock – Process termination, Resource preemption

7. Memory Management

7.1.Background – Basic hardware, Address binding, Logical versus physical address space, Dynamic loading, Dynamic linking and shared libraries

[2]

[4]

[2]

- [8]
- [6]

[8]

[11]

7.2 Swapping

7.3 Contiguous Memory Allocation – Memory mapping and protection, Memory allocation, Fragmentation

7.4 Paging – Basic Method, Hardware support, Protection, Shared Pages

7.5 Segmentation – Basic concept, Hardware

7.6 Virtual Memory Management – Background, Demand paging, Performance of demand paging, Page replacement – FIFO, OPT, LRU, Second chance page replacement

8. File System

[7]

8.1 File concept

8.2 Access Methods – Sequential, Direct, Other access methods

8.3 Directory and Disk Structure – Storage structure, Directory overview, Single level directory, Two level directory, Tree structure directory, Acyclic graph directory, General graph directory

8.4 Allocation Methods – Contiguous allocation, Linked allocation, Indexed allocation

8.5 Free Space Management – Bit vector, Linked list, Grouping, Counting, Space maps

Reference Books:

1. Operating System Concepts - Siberchatz, Galvin, Gagne (8th Edition).

2. Operating Systems : Principles and Design – Pabitra Pal Choudhary (PHI Learning Private Limited)

SAVITRIBAI PHULE PUNE UNIVERSITY T.Y. B. Sc. COMPUTER SCIENCE SYLLABUS TO BE IMPLEMENTED FROM ACADEMIC YEAR 2015-16 TITLE OF PAPER : Theoretical Computer Science Code No. : CS-332

Semester III Total Lectures : 48

Aim:

To have a introductory knowledge of automata, formal language theory and computability. **Objectives:**

- To have an understanding of finite state and pushdown automata.
- To have a knowledge of regular languages and context free languages.
- To know the relation between regular language, context free language and corresponding recognizers.
- To study the Turing machine and classes of problems.

Prerequisite:

- Sets, Operations on sets, Finite & infinite sets Formal Language
- Relation, Equivalence Relation, (reflexive, transitive and symmetric closures)

1. Introduction

1.1 Symbol, Alphabet, String, Prefix& & Suffix of Strings, Formal Language, Operations on Languages.

- 1.2 Regular Expressions (RE) : Definition & Example
- 1.3 Regular Expressions Identities.

2. Finite Automata

2.1 Deterministic finite Automaton – Definition, DFA as language recognizer, DFA as a pattern recognizer.

- 2.2 Nondeterministic finite automaton Definition and Examples.
- 2.3 NFA TO DFA : Method (From Book 4)
- 2.4 NFA with ε- transitions Definition and Examples.
- 2.5 NFA with ε-Transitions to DFA & Examples
- 2.6 Finite automaton with output Mealy and Moore machine, Definition and Examples.
- 2.7 Minimization of DFA, Algorithm & Problem using Table Method.

3. Regular Languages

- 3.1 Regular language-Definition and Examples.
- 3.2 Conversion of RE To FA-Examples.
- 3.3 Pumping lemma for regular languages and applications.
- 3.4 Closure properties of regular Languages

(Union, Concatenation, Complement, Intersection and Kleene closure)

4. Context Free Grammar and Languages

- 4.1 Grammar Definition and Examples.
- 4.2 Derivation-Reduction Definition and Examples.
- 4.3 Chomsky Hierarchy.
- 4.4 CFG : Definition & Examples. LMD, RMD, ,Parse Tree
- 4.5 Ambiguous Grammar : Concept & Examples.
- 4.6 Simplification of CFG :
 - 4.6.1 Removing Useless Symbols,
 - 4.6.2 Removing unit productions
 - 4.6.3 Removing ε productions & Nullable symbols

4.7 Normal Forms :

4.7.1 Chomsky Normal Form (CNF) Method & Problem

[3]

[5]

[12]

[12]

- 4.7.2 Greibach Normal form (GNF) Method & Problem
- 4.8 Regular Grammar : Definition.
 - 4.8.1 Left linear and Right Linear Grammar-Definition and Example.
 - 4.8.2 Equivalence of FA & Regular Grammar
 - 4.8.2.1 Construction of regular grammar equivalent to a given DFA
 - 4.8.2.2 Construction of a FA from the given right linear grammar

[6]

[10]

4.9 Closure Properties of CFL's(Union, concatenation and Kleen closure) Method and examples

5. Push Down Automaton

5.1 Definition of PDA and examples

- 5.2 Construction of PDA using empty stack and final State method : Examples using stack method
- 5.3 Definition DPDA & NPDA, their correlation and Examples of NPDA

5.4 CFG (in GNF) to PDA : Method and examples

6. Turing Machine

- 6.1 The Turing Machine Model and Definition of TM
- 6.2 Design of Turing Machines

6.3 Problems on language recognizers.

6.4 Language accepted by TM

6.5 Types of Turing Machines(Multitrack TM, Two way TM, Multitape TM, Non-deterministic TM)

6.6 Introduction to LBA (Basic Model) &CSG.(Without Problems)

6.7 Computing TM, Enumerating TM, Universal TM

6.8 Recursive Languages

6.5.1. Recursive and Recursively enumerable Languages.

6.5.2. Difference between recursive and recursively enumerable language.

6.9 Turing Machine Limitations

6.10 Decision Problem, Undecidable Problem, Halting Problem of TM

References :-

1 Introduction to Automata theory, Languages and computation By John E. Hopcroft and Jeffrey Ullman – Narosa Publishing House.

2. Introduction to Automata theory, Languages and computation By John Hopcroft, Rajeev Motwani and Jeffrey Ullman –Third edition Pearson Education

3. Introduction to Computer Theory Daniel I. A. Cohen -2^{nd} edition – John Wiley & Sons

4. Theory of Computer Science (Automata, Language & Computation) K. L. P. Mishra & N. Chandrasekaran, PHI Second Edition

5. Introduction to Languages and The Theory of Computation John C. Martin TMH, Second Edition

SAVITRIBAI PHULE PUNE UNIVERSITY T.Y. B. Sc. COMPUTER SCIENCE SYLLABUS **TO BE IMPLEMENTED FROM ACADEMIC YEAR 2015-16 TITLE OF PAPER : Compiler Construction** Code No. : CS-342

Semester IV **Total Lectures : 48**

[5]

[5]

[20]

To understand the various phases of a compiler and to develop skills in designing a compiler **Objective :**

- To understand design issues of a lexical analyzer and use of Lex tool
- To understand design issues of a parser and use of Yacc tool
- To understand issues related to memory allocation
- To understand and design code generation schemes

1. Introduction

- 1.1 Definition of Compiler, Aspects of compilation.
- The structure of Compiler. 1.2
- 1.3 Phases of Compiler - Lexical Analysis, Syntax Analysis, Semantic Analysis, Intermediate
- Code generation, code optimization, code generation.
- 1.4 Error Handling
- Introduction to one pass & Multipass compilers, cross compiler, Bootstrapping. 1.5

2. Lexical Analysis(Scanner)

- Review of Finite automata as a lexical analyzer, 2.1
- Applications of Regular Expressions and Finite Automata (lexical analyzer, searching using 2.2
- RE), Input buffering, Recognition of tokens
- 2.3 LEX: A Lexical analyzer generator (Simple Lex Program)

3. Syntax Analysis(Parser)

3.1 Definition, Types of Parsers

3.2 Top-Down Parser -

- 3.2.1Top-Down Parsing with Backtracking: Method & Problems
- 3.2.2 Drawbacks of Top-Down parsing with backtracking,
- 3.2.3Elimination of Left Recursion(direct & indirect)
- 3.2.4Need for Left Factoring & examples
- 3.3 Recursive Descent Parsing : Definition
 - 3.3.1Implementation of Recursive Descent Parser Using Recursive Procedures
- 3.4 Predictive [LL(1)]Parser(Definition, Model)
 - 3.4.1Implementation of Predictive Parser[LL(1)]
 - 3.4.2 FIRST & FOLLOW
 - 3.4.3 Construction of LL(1) Parsing Table
 - 3.4.4Parsing of a String using LL(1) Table
- 3.5 Bottom-Up Parsers
- 3.6 Operator Precedence Parser -Basic Concepts
 - 3.6.1Operator Precedence Relations form Associativity & Precedence
 - 3.6.2 Operator Precedence Grammar
 - 3.6.3 Algorithm for LEADING & TRAILING(with ex.)
 - 3.6.4 Algorithm for Operator Precedence Parsing (with ex.)
 - **3.6.5Precedence Functions**
- 3.7 Shift Reduce Parser
 - 3.7.1 Reduction, Handle, Handle Pruning
 - 3.7.2Stack Implementation of Shift Reduce Parser (with examples)

Aim :

3.8 LR Parser

3.8.1Model

3.8.2Types [SLR(1), Canonical LR, LALR] Method & examples.

3.9 YACC (from Book 3) –program sections, simple YACC program for expression evaluation

4. Syntax Directed Definition

4.1Syntax Directed Definitions(SDD)

- 4.1.1 Inherited & Synthesized Attributes
- 4.1.2 Evaluating an SDD at the nodes of a Parse Tree, Example
- 4.2 Evaluation Orders for SDD's
 - 4.2.1 Dependency Graph
 - 4.2.2 Ordering the Evaluation of Attributes
 - 4.2.3 S-Attributed Definition
 - 4.2.4 L-Attributed Definition
- 4.3 Application of SDT
 - 4.3.1 Construction of syntax trees,
 - 4.3.2 The Structure of a Type
- 4. 4 Translation Schemes
 - 4.4.1 Definition, Postfix Translation Scheme

5. Memory Allocation

- 5.1 Memory allocation static and dynamic memory allocation,
- 5.2 Memory allocation in block structure languages, Array allocation and access.

6. Code Generation and Optimization

- 6.1 Compilation of expression
 - 6.1.1 Concepts of operand descriptors and register descriptors with example.
 - 6.1.2 Intermediate code for expressions postfix notations,
 - 6.1.3 triples and quadruples, expression trees.
- 6.2 Code Optimization Optimizing transformations compile time evaluation, elimination of common sub expressions, dead code elimination, frequency reduction, strength reduction
- 6.3 Three address code
 - 6.3.1. DAG for Three address code
 - 6.3.2 The Value-number method for constructing DAG's.
- 6.4 Definition of basic block, Basic blocks And flow graphs
- 6.5 Directed acyclic graph (DAG) representation of basic block
- 6.6 Issues in design of code generator

References :-

- 1. Compilers: Principles, Techniques, and Tools , Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman
- 2. Principles of Compiler Design By : Alfred V. Aho, Jeffrey D. Ullman (Narosa Publication House)
- 3. LEX & YACC (O'reilly Publication)

[8]

[2]

[8]

SAVITRIBAI PHULE PUNE UNIVERSITY T.Y. B. Sc. COMPUTER SCIENCE SYLLABUS TO BE IMPLEMENTED FROM ACADEMIC YEAR 2015-16 TITLE OF PAPER : Computer Networks -I Code No. : CS-333

	Semester III Tot	al Lectures : 48	
Pre-req	uisites: Basics of computer, Knowledge of 'C' for as	signment.	
Objecti	ves: This course will prepare students in Basic netwo	rking concepts.	
1. 2. 3. 4.	 Understand types of addresses, data communication. Understand the concept of networking models, protocols, functionality of each layer. 		
Ch.No.	Name of Chapter	Reference Book	
1	Chapter 1 Introduction to Computer Networks	[Lectures 8]	
1.1	Computer Networks- Goals and applications – Bus , Home Application, Mobile User, Social Issues	siness Application Book 1 CH1 (Pg. No.3 -14)	
1.2	Network Hardware - Broadcast and point-to-point	Book 1 CH1 (Pg. No.14-16)	
1.3	topologies – star, bus, mesh, ring etc.	Book 2 CH1 (Pg. No. 9-13)	
1.4	Network Types-LAN, MAN, WAN, Wireless Net Networks, Internetwork	works, Home Book 1 CH1 (Pg. No.16-26)	
1.5	Data Communication-Definition, components, da Data Flow	ta representation, Book 2 CH1 (Pg. No. 3-7)	
1.6	Protocols & Standards De facto and De jure standa	rd, Book 2 CH1 (Pg. No. 19-20)	
1.7	Network Software - Protocol Hierarchies -layers, p interfaces Network architecture, protocol stack, Design issues of the layers –addressing, error flow control, multiplexing and demultiplexing Connection-oriented and connectionless service Service Primitives – listen, connect, receive, s and Berkley Socket ,the relationships of service	(Pg. No.26-37) control, , routing ce, end, disconnect	
2.	Network Models	[Lectures 5]	
2.1	OSI Reference Model - Functionality of each	Book 2 CH2 (Pg. No 29-42)	

2.2	TCP/IP Reference Model, Comparison of OSI and TCP/IP model	Book 1 CH1 (Pg. No. 41-46)
2.3	TCP/IP Protocol Suite	Book 2 CH2 (Pg. No. 42-45)
2.4	Addressing - Physical, Logical and Port addresses (No examples)	Book 2 CH2 (Pg. No.45-50)
3.	Transmission Media	[Lectures 5]
3.1	Twisted pair cable – UTP Vs STP, categories connectors & applications , Coaxial cable – standards, connectors & applications Fiber Optic cable – propagation modes, connectors & applications(No diagrams will be asked in examination)	Book 2 CH7 (Pg. No.192,193, 195- 202)
3.2	Unguided Media – Wireless- Radio Waves,- Microwaves, Infrared	Book 2 CH7 (Pg. No. 203-208)
3.3	Light wave transmission	Book 1 CH2 (Pg. No. 107-108)
3.4	Types of cabling and Networking Tool - CAT5 and CAT6 Cable Color Code, Crossover Cabling and Straight Through Cable, Crimping and Line testing tool	Book 3
4.	The Physical Layer	[Lectures 14]
4.1	Analog and Digital data, Analog and Digital signals, Periodic & Non-periodic signals Digital Signals- Bit rate, bit length, baseband Transmission (no cases)	Book 2 CH3 (Pg. No. 57-58) Book 2 CH3 (Pg. No. 71-75)
4.2	Transmission Impairments –attenuation, distortion and noise, Data Rate Limits – Noiseless channel: Nyquist's bit rate,noisy channel : Shannon's law (Enough problems should be covered on every topic.)	Book 2 CH3 (Pg. No. 80-88)
4.3	Performance of the Network Bandwidth, Throughput, Latency(Delay), Bandwidth –Delay Product, Jitter	Book 2 CH3 (Pg. No. 89-94)
4.4	Line Coding Characteristics, Line Coding Schemes – Unipolar - NRZ, Polar-NRZ-I, NRZ-L, RZ, Manchester and Differential Manchester (Enough problems should be covered on every topic.)	Book 2 CH4 (Pg. No. 101-109)
4.5	Transmission Modes, Parallel Transmission and Serial Transmission –Asynchronous and Synchronous and Isochronous	Book 2 CH4 (Pg. No. 131-135)
4.6	Trunks & Multiplexing FDM and TDM	Book 1 CH2 (Pg. No. 137,138 140- 143)

4.7	Switching - Circuit Switching, Message Switching and Packet Switching, comparison of circuit & packet switching	Book 1 CH2 (Pg. No. 146-151)
4.8	Physical Layer Devices Repeaters, Hubs- active hub Passive hub	Book 2 CH15 (pg. No. 445-447)
5.	The Data Link Layer	[Lectures 9]
5.1	Design Issues – Services provided to the Network Layer , Framing – Concept, Methods - Character Count, Flag bytes with Byte Stuffing, Starting & ending Flags with Bit Stuffing and Physical Layer Coding Violations, Error Control, Flow Control	Book 1 CH3 (pg. No. 184-192)
5.2	Error detection code CRC (Enough problems should be covered on every topic.)	Book 1 CH3 (pg. No. 196-199)
5.3	Data Link Layer Protocols –Noiseless channel -A Simplex, Stop- And-Wait protocol, noisy channel –stop & wait, ARR, Pipelining, Go –back –N ARR & ARQ, selective repeat ARR(No examples & no algorithms)	Book 1 CH3 (pg. No. 312-338)
5.4	Sliding Window Protocols Piggybacking-Need, Advantages/Disadvantages, 1-bit sliding window protocols,	Book 1 CH3 (pg. No. 211-216)
5.5	Data Link Layer Protocols-HDLC – frame format, all frame types PPP – Use, Frame Format, Use of PPP in the Internet	Book 1 CH3 (pg. No. 234-242)
5.6	Data Link Layer Devices - Bridges – Filtering, Transparent Bridges, spanning tree and Source Routing Bridges, Bridges Connecting Different LANs	Book 2 CH15 (pg. No. 447-454)
5.7	Remote bridges	Book 1 CH4 (pg. No. 325-326)
6.	The Medium Access Sublayer	[Lectures 7]
6.1	Random Access Protocols ALOHA – pure and slotted	Book 2 CH12
6.2	CSMA – 1-persistent, p-persistent and non-persistent CSMA/CD,CSMA/CA	(pg. No. 364-390)
6.3	Controlled Access Reservation, Polling and Token Passing	
6.4	Channelization FDMA, TDMA and CDMA-Analogy, Idea, Chips, Data Representation, Encoding and Decoding, Signal Level, Sequence Generation(Enough problems should be covered on every topic.)	

Reference Books:

- Computer Networks by Andrew Tanenbaum, Pearson Education.[4th Edition]
 Data Communication and Networking by Behrouz Forouzan, TATA McGraw Hill. .[4th Edition]
- Networking All In One Dummies Wiley Publication.[5th Edition]

Guidelines For Examination:

1) Frame and Packet formats should be asked.

- Problems should be asked at least for 8 marks.
 Page no listed above may vary according to year of publication of 4th edition but topics remain same.
- 4) All sub topics listed pages of respective reference books should be covered.

SAVITRIBAI PHULE PUNE UNIVERSITY T.Y. B. Sc. COMPUTER SCIENCE SYLLABUS TO BE IMPLEMENTED FROM ACADEMIC YEAR 2015-16 TITLE OF PAPER : Computer Networks -II Code No. : CS-343

Semester IV

Total Lectures: 48

Pre-requisites: Basics of computer networks covered last semester, Knowledge of 'C'. Objectives: This course will prepare students in

- 1. Basic networking concepts.
- 2. Understand wired and wireless networks, its types, functionality of layer.
- 3. Understand importance of network security and cryptography.

Ch. No.	Name of Chapter	Reference Book
1.	Wired LANs	[Lectures 9]
1.1	IEEE Standards Data Link Layer, Physical Layer	Book 2 CH13 (Pg. No 395-397)
1.2	Standard Ethernet MAC Sublayer – Frame Format, Frame Length, Addressing, Access Method	Book 2 CH13 (Pg. No 397-402)
1.3	Physical Layer – Encoding and Decoding, 10Base5, 10Base2, 10Base-T, 10Base-F,	Book 2 CH13 (Pg. No 402-405)
1.4	Changes In The Standard – Bridged Ethernet, Switched Ethernet, Full Duplex Ethernet	Book 2 CH13 (Pg. No 406-409)
1.5	Fast Ethernet – Goals, MAC Sublayer, Topology, Implementation	Book 2 CH13 (Pg. No.409-410)
1.6	Gigabit Ethernet – goals, MAC Sublayer, Topology, Implementation	Book 2 CH13 (Pg. No 412-414)
1.7	Ten-Gigabit Ethernet – goals, MAC Sublayer, Physical Layer	Book 2 CH13 (Pg. No 416)
1.8	Backbone Networks Bus Backbone, Star Backbone, Connecting Remote LANs	Book 2 CH15 (Pg. No 456-458)
1.9	Virtual LANs Membership, Configuration, Communication between Switches, IEEE standards Advantages	Book 1 CH1 (Pg. No 458-463)
2.	Wireless LAN	[Lectures 2]
2.1	IEEE 802.11 Architecture – Basic Service Set, Extended Service Set, Station Types	Book 2 CH14 (Pg. No421-422)

2.2	Bluetooth Architecture – Piconet, scatternet	Book 2 CH14 (Pg. No 434-436)	
3.	The Network Layer	[Lectures 10]	
3.1	Design Issues Store-and-forward packet switching, Services Provided to the Transport Layer, Implementation of Connectionless Service, Implementation of Connection Oriented Service, Comparison of Virtual Circuit and Datagram subnets	Book 1 CH5 (Pg. No 343-349)	
3.2	Logical Addressing IPV4 Addresses – Address Space, Notations, Classful Addressing,Subnetting, Supernetting,Classless Addressing, Network Address Translation(NAT), (Enough problems should be covered on Addressing),	Book 2 CH19 (Pg. No 549-566)	
3.3	IPV4 Protocol Datagram Format, Fragmentation, Checksum, Options	Book 2 CH20 (Pg. No 582-596)	
3.4	Routing Properties of routing algorithm, Comparison of Adaptive and Non- Adaptive Routing Algorithms	Book 1 CH5 (Pg. No 350-352)	
3.5	Congestion Control – Definition, Factors of Congestion, Difference between congestion control and flow control, General Principles of Congestion Control, Congestion Prevention Policies	Book 1 CH5 (Pg. No 384-389)	
3.6	Network Layer Devices –Routers	Book 2 CH15 (Pg. No. 455)	
4.	Address Mapping	[Lectures 4]	
4.1	Protocol(ARP)-Cache Memory, Packet Format, Encapsulation, Operation, Four Different Cases, Proxy ARP, RARP, BOOTP, DHCP – Static Address Allocation, Dynamic Address Allocation, Manual and automatic Configuration	Book 2 CH21 (Pg. No 611-620)	
5.	The Transport Layer	[Lectures 6]	
5.1	Process-to-Process Delivery Client Server Paradigm, Multiplexing and De-multiplexing, Connectionless Vs Connection-Oriented Service, Reliable Vs Unreliable	Book 2 CH23 (Pg. No 703-708)	
5.2	User Datagram Protocol(UDP) Datagram Format, Checksum, UDP operations, Use of UDP	Book 2 CH23 (Pg. No709-715)	
5.3	Transmission Control Protocol (TCP) TCP Services – Process to- Process Communication, Stream Delivery Service, sending and Receiving Buffers, Segments, Full –Duplex Communication, Connection oriented service, Reliable service	Book 2 CH23 (Pg. No 715-719)	
5.4	TCP Features –Numbering System, Byte Number, Sequence Number, Acknowledgement Number, Flow Control, Error Control, Congestion Control	Book 2 CH23 (Pg. No 719-720)	
5.5	TCP Segment – Format	Book 2 CH23	

(Pg. No 721-723)

6.	The Application Layer	[Lectures 7]
6.1	Domain Name System (DNS) Name Space, Domain, Name Space, Distribution of Name Space, DNS in the Internet, Resolution	Book 2 CH25 (Pg. No 797-809)
6.2	E-MAIL Architecture, User Agent, Message Transfer Agent-SMTP, Message Access Agent-POP3, IMAP4, Web Based Mail	Book 2 CH26 (Pg. No 824-840)
6.3	File Transfer Protocol (FTP) Communication over control connection, Communication over Data Connection, Anonymous FTP	Book 2 CH26 (Pg. No 840-844)
6.4	WWW Architecture, WEB Documents	Book 2 CH27 (Pg. No 851-861)
6.5	HTTP - HTTP Transaction, Persistent and Non persistent Connection, Proxy Server	Book 2 CH27 (Pg. No 861-868)
6.6	Devices- Gateways – Transport & Application Gateways	Book 1 CH4 (Pg. No 328)
7.	Network Security	[Lectures 10]
7.1	Introduction – Security Services- Message-Confidentiality, Integrity, Authentication, Non repudiation. Entity (User)- Authentication.	Book 2 CH31 (Pg. No 961-962)
7.2	Message confidentiality –Confidentiality with Asymmetric-Key Cryptography, Confidentiality with Symmetric-Key Cryptography	Book 2 CH31 (Pg. No 962-964)
7.3	Cryptography Encryption Model, Substitution Cipher and Transposition Cipher (Problems should be covered.)	Book 1 CH8 (Pg. No 724-730)
7.4	Two Fundamental Cryptographic Principles	Book 1 CH8 (Pg. No 735-736)
7.5	Communication Security Firewalls	Book 1 CH8 (Pg. No776-779)
7.6	Web Security Threats, Secure Naming, DNS Spoofing, Secure DNS, Self Certifying names	Book 1 CH8 (Pg. No 805-813)
7.7	Mobile Code Security Java Applet Security, Activex, JavaScript, Viruses	Book 1 CH8 (Pg. No 816-819)
7.8	Social Issues Privacy, Anonymous Remailers, Freedom of Speech, Stegnography, Copyright	Book 1 CH8 (Pg. No 819-828)
Refere	ence Books:	
1.	Computer Networks by Andrew Tanenbaum, Pearson Education.[4th Edition]	on]

2. Data Communication and Networking by Behrouz Forouzan, TATA McGraw Hill. .[4th Edition]

Guidelines For Examination:

- 1. Frame and Packet formats should be asked.
- 2. Problems should be asked at least for 8 marks.

- 3. Page no listed above may vary according to year of publication of 4th edition but topics remain same.
- 4. All sub topics listed pages of respective reference books should be covered.

SAVITRIBAI PHULE PUNE UNIVERSITY

T.Y. B. Sc. COMPUTER SCIENCE SYLLABUS TO BE IMPLEMENTED FROM ACADEMIC YEAR 2015-16 TITLE OF PAPER : Internet Programming I Code No. : CS-334

	Semester III	Total Lectures: 48	
Aim: To Design dynamic and interactive Objective: Learn Core-PHP, Server Learn PHP-Database har Prerequisite: HTML.	Side Scripting Language		
 Introduction to web techniques HTTP basics, Introduction to Web s Introduction to PHP What does PHP do? Lexical structure Language basics Book 1 chapter 2 	erver and Web browser		[8]
 2. Function and String 2.1Defining and calling a function 2.2 Default parameters 2.3 Variable parameters, Missing parameters 2.4 Variable function, Anonymous function 2.5 Types of strings in PHP 2.6 Printing functions 2.7 Encoding and escaping 2.8 Comparing strings 2.9 Manipulating and searching strings 2.10 Regular expressions Book 1 chapter 3 and 4 			[10]
 3. Arrays 3.1 Indexed Vs Associative arrays 3.2 Identifying elements of an array 3.3 Storing data in arrays 3.4 Multidimensional arrays 3.4 Extracting multiple values 3.5 Converting between arrays and varial 3.6 Traversing arrays 3.7 Sorting 3.8 Action on entire arrays 3.9 Using arrays Book 1 chapter 5 	bles		[6]

4. Introduction to Object Oriented Programming

4.1 Classes
4.2 Objects
4.3 Introspection
4.4 Serialization
4.5 Inheritance
4.6 Interfaces
4.7Encapsulation
Book 1, 2 chapter 12

5. Files and directories

5.1 Working with files and directories
5.2 Opening and Closing, Getting information about file, Read/write to file, Splitting name and path from file, Rename and delete files
5.3 Reading and writing characters in file
5.4 Reading entire file
5.5 Random access to file data
5.6 Getting information on file
5.7 Ownership and permissions
Book 2 chapter 7

6. Databases (PHP-PostgreSQL)

6.1 Using PHP to access a database6.2 Relational databases and SQL6.3 PEAR DB basics6.4 Advanced database techniques6.5 Sample application (Mini project)Book 1 chapter 9

References

- 1. Programming PHP By Rasmus Lerdorf and Kevin Tatroe, O'Reilly publication
- 2. Beginning PHP 5, Wrox publication
- 3. PHP web sevices, Wrox publication
- 4. AJAX Black Book, Kogent solution
- 5. Mastering PHP, BPB Publication
- 6. PHP cookbook, O'Reilly publication
- 7. PHP for Beginners, SPD publication
- 8. Programming the World Wide Web, Robert W Sebesta(3rd Edition)
- 9. Check out Joomla!presss Pearson (Addison-Wesley Professional).
- 10. www.php.net.in
- 11. www.W3schools.com
- 12. www.wrox.com
- 13. https://api.drupal.org

[6]

[10]

SAVITRIBAI PHULE PUNE UNIVERSITY T.Y. B. Sc. COMPUTER SCIENCE SYLLABUS TO BE IMPLEMENTED FROM ACADEMIC YEAR 2015-16 TITLE OF PAPER : Internet Programming II Code No. : CS-344

Semester IV **Total Lectures: 48** Aim: To Design dynamic and interactive Web pages. **Objective:** • Learn different technologies used at client Side Scripting Language • Learn XML,CSS and XML parsers. • One PHP framework for effective design of web application. • Learn JavaScript to program the behavior of web pages. Learn AJAX to make our application more dynamic. 1. Web Techniques [10] 1.1 Variables 1.2 Server information 1.3 Processing forms 1.4 Setting response headers 1.5 Maintaining state 1.6 SSL Book 1 chapter 7 2. Handling email with php [8] 2.1 Email background 2.2 Internet mail protocol 2.3 Structure of an email message 2.4 Sending email with php 2.5 Email attachments. 2.6 Email id validation and verification 2.7 PHP error handling. Book 2 chapter 15 3. PHP framework [4] 3.1 Introduction to PHP framework. 3.2 Features, Applications. 3.3 One example like JOOMLA, DRUPAL. Book 11, https://api.drupal.org **4. XML** [8] 4.1What is XML? 4.2 XML document Structure 4.3 PHP and XML 4.4 XML parser 4.5 The document object model 4.6 The simple XML extension 4.7 Changing a value with simple XML Book 2 chapter 8 5. WEB DESIGNING TECHNOLOGIES(JavaScript-DHTML) [10]

5.1 Overview of JavaScript, DHTML 5.2 Object Orientation and JavaScript 5.3 Basic Syntax(JS datatypes, JS variables)

5.4 Primitives, Operations and Expressions

- 5.5 Screen Output and keyboard input(Verification and Validation)
- 5.6 JS Control statements
- 5.7 JS Functions
- 5.8 JavaScript HTML DOM Events(onmouseup, onmousedown, onclick,

onload,onmouseover,onmouseout).

5.9 JS Strings.

- 5.10 JS String methods
- 5.11JS popup boxes(alert, confirm, prompt).
- 5.12 Changing property value of different tags using DHTML (ex. adding innerhtml for DIV tag, changing source of image etc.).

Book 10, <u>www.w3schools.com</u>.

6. AJAX

[8]

- 6.2 AJAX web application model
- 6.3 AJAX PHP framework

6.1 Introduction of AJAX

- 6.4 Performing AJAX validation
- 6.5 Handling XML data using php and AJAX
- 6.6 Connecting database using php and AJAX

Book 4 chapter 1,2 and 9

References

- 1. Programming PHP By Rasmus Lerdorf and Kevin Tatroe O'Reilly publication
- 2. Beginning PHP 5, Wrox publication
- 3. PHP web services, Wrox publication
- 4. AJAX Black Book Kogent solution
- 5. Mastering PHP BPB Publication
- 6. PHP cookbook O'Reilly publication
- 7. Learning PHP and MYSQL, O'Reilly publication
- 8. PHP and MYSQL, O'Reilly publication
- 9. PHP for Beginners, SPD publication
- 10. Programming the World Wide Web, Robert W Sebesta(3rd Edition)
- 11. Check out Joomla!presss **Pearson** (Addison-Wesley Professional).
- 12. www.php.net.in
- 13. www.W3schools.com
- 14. <u>www.wrox.com</u>
- 15. https://api.drupal.org

SAVITRIBAI PHULE PUNE UNIVERSITY T.Y. B.Sc. COMPUTER SYLLABUS TO BE IMPLEMENTED FROM ACADEMIC YEAR 2015-16 TITLE OF PAPER : Programming in Java-I Code No. : CS-335

	Semester IV	Total Lectures: 48
Prerequisite:		
• Kn	nowledge of C Programming language	
Objective:		
•	To learn Object Oriented Programming lang	guage
•	To handle abnormal termination of a progra	
•	To create flat files	
•	To design User Interface using Swing and A	AWT
1. An Introdu	uction to Java	[4]
	t History of Java	[·]
	es or buzzwords of Java	
	rison of Java and C++	
1.4 Java Er		
	java program	
	pols – jdb, javap, javadoc	
	DE – Eclipse/NetBeans (Note: Only for Lab D	Demonstration)
	1	,
2. An Overvie	ew of Java	[4]
2.1 Types of	of Comments	
2.2 Data Ty		
2.3 Final V	<i>v</i> ariable	
2.4 Declari	ing 1D, 2D array	
2.5 Accepti	ing input using Command line argument	
2.6 Accepti	ing input from console (Using BufferedReade	er class)
3. Objects and	d Classes	[8]
	ng Your Own Classes	[-]
	Specifiers (public, protected, private, default	.)
3.3 Array o		,
•	uctor, Overloading Constructors and use of 'the	his' Keyword
	lock, static Fields and methods	5
	5 Predefined class – Object class methods (eq	uals(), toString(), hashcode(),
	tClass())	
	7 Inner class	
3.8 Creatin	g, Accessing and using Packages	
	g jar file and manifest file	
3.10 Wrapp		
	ge Collection (finalize() Method)	
	and time processing	
4. Inheritance	e and Interface	[7]
	ance Basics (extends Keyword) and Types of	
	2 Superclass, Subclass and use of Super Keyw	
	3 Method Overriding and runtime polymorphi	
118		

4.4 Use of final keyword related to method and class	
4.5 Use of abstract class and abstract methods	
4.6 Defining and Implementing Interfaces	
4.7 Runtime polymorphism using interface	
4.7 Object Cloning	
5. Exception Handling	[4]
5.1 Dealing Errors	
5.2 Exception class, Checked and Unchecked exception	
5.3 Catching exception and exception handling	
5.4 Creating user defined exception	
5.5 Assertions	
6. Strings, Streams and Files	[7]
6.1 String class and StringBuffer Class	r. 1
6.2 Formatting string data using format() method	
6.2 Using the File class	
6.3 Stream classes	
Byte Stream classes	
Character Stream Classes	
6.4 Creation of files	
6.5 Reading/Writing characters and bytes	
6.6 Handling primitive data types	
6.7 Random Access files	
7. User Interface Components with AWT and Swing	[10]
7.1 What is AWT ? What is Swing? Difference between AWT and Swing.	[-*]
7.2 The MVC Architecture and Swing	
7.3 Layout Manager and Layouts, The JComponent class	
7.4 Components –	
JButton, JLabel, JText, JTextArea, JCheckBox and JRadioButton,	
JList, JComboBox, JMenu and JPopupMenu Class, JMenuItem and JCheckBoxMenuItem,	
JRadioButtonMenuItem, JScrollBar	
7.5 Dialogs (Message, confirmation, input), JFileChooser, JColorChooser	
7.6 Event Handling: Event sources, Listeners	
7.7 Mouse and Keyboard Event Handling	
7.8 Adapters	
7.9 Anonymous inner class	
8. Applet	[4]
8.1 Applet Life Cycle	
8.2 appletviewer tool	
8.3 Applet HTML Tags	
8.4 Passing parameters to Applet	
8.5 repaint() and update() method	
References:	
1) Complete reference Java by Herbert Schildt(5th edition)	

Complete reference Java by Herbert Schildt(5th edition)
 Java 2 programming black books, Steven Horlzner
 Programming with Java , A primer ,Forth edition , By E. Balagurusamy
 Core Java Volume-I-Fundamentals, Eighth Edition, Cay S. Horstmann, Gary Cornell,

Prentice Hall, Sun Microsystems Press

SAVITRIBAI PHULE PUNE UNIVERSITY T.Y. B.Sc. COMPUTER SYLLABUS TO BE IMPLEMENTED FROM ACADEMIC YEAR 2015-16 TITLE OF PAPER : Programming in Java-II Code No. : CS-345

ъ ·	Semester IV	Total Lectures : 48
Prerequis •	ste: Knowledge of Core Java (CS – 345)	
Objective	 To learn database programming using Java To study web development concept using Servlet To develop a game application using multithread To learn socket programming concept 	
1.2 Lis 1.3 Set 1.4 Ma	ion roduction to the Collection framework t – ArrayList, LinkedList and Vector,Stack,Queue - HashSet, TreeSet, and LinkedHashSet p – HashMap, LinkedHashMap, Hashtable and TreeM erfaces such as Comparator, Iterator, ListIterator, Enur	-
2.1 The 2.2 Typ 2.3 Exe 2.4 Scr 2.5 Me 2.6 Tra	ase Programming e design of jdbc, jdbc configuration pes of drivers ecuting sql statements, query execution rollable and updatable result sets stadata – DatabaseMetadata, ResultSetMetadata unsactions – commit(), rollback(), SavePoint ase : PostgreSQL)	[10]
3.2 Lif 3.3 Ton 3.4 Han 3.5 Han 3.6 Ret 3.7 Ses	roduction to Servlet and Hierarchy of Servlet e cycle of servlet mcat configuration (Note: Only for Lab Demonstration nding get and post request (HTTP) ndling a data from HTML to servlet triving a data from database to servlet ession tracking – User Authorization, URL rewriting, H ess and HttpSession	
4.2 Life 4.2 Imp 4.3 Scr 4.4 JSF 4.5 Mit	nple first JSP program e cycle of JSP plicit Objects ipting elements – Declarations, Expressions, Scriplets P Directives – Page Directive, include directive xing Scriplets and HTML ample of forwarding contents from database to servlet,	

using JSP scriplet tag

5. Multithreading

- 5.1 What are threads?
- 5.2 Life cycle of thread
- 5.3 Running and starting thread using Thread class
- 5.4 Thread priorities
- 5.5 Running multiple threads
- 5.6 The Runnable interface
- 5.7 Synchronization and interthread communication

6. Networking

- 6.1 Networking basics Protocol, Addressing, DNS, URL, Socket, Port
- 6.2 The java.net package InetAddress, URL, URLConnection class
- 6.3 SocketServer and Socket class
- 6.4 Creating a Socket to a remote host on a port (creating TCP client and server)
- 6.5 Simple Socket Program Example

References:

1) Complete reference Java by Herbert Schildt(5th edition)

2) Java 2 programming black books, Steven Horlzner

3) Programming with Java, A primer, Forth edition, By E. Balagurusamy

4) Core Java Volume-I-Fundamentals, Eighth Edition, Cay S. Horstmann, Gary Cornell, Prentice Hall, Sun Microsystems Press

5) Core Java Volume-II-Advanced Features, Eighth Edition, Cay S. Horstmann, Gary Cornell, Prentice Hall, Sun Microsystems Press

SAVITRIBAI PHULE PUNE UNIVERSITY T.Y. B. Sc. COMPUTER SCIENCE SYLLABUS TO BE IMPLEMENTED FROM ACADEMIC YEAR 2015-16 TITLE OF PAPER : Object Oriented Software Engineering Code No. : CS-336

Semester III Total Lectures: 48

Prerequisites

- Knowledge of Object Oriented Concepts
- Knowledge of Classical Software Engineering

Aim

To Understand Object Oriented Modeling techniques and their applicability.

Objectives

- Understanding importance of Object Orientation in Software engineering
- Understand the components of Unified Modeling Language
- Understand techniques and diagrams related to structural modeling
- Understand techniques and diagrams related to behavioral modeling
- Understand techniques of Object Oriented analysis, design and testing

1. Object Oriented Concepts and Principles

1.1 What is Object Orientation ? - Introduction , Object , Classes and Instance , Polymorphism, Inheritance

1. 2 Object Oriented System Development- Introduction, Function/Data Methods (With Visibility), Object Oriented Analysis, Object Oriented Construction

1.3 Identifying the Elements of an Object Model

- 1.4 Identifying Classes and Objects
- 1.5 Specifying the Attributes (With Visibility)

1.6 Defining Operations

- 1.7 Finalizing the Object Definition
- 2. Introduction to UML
- 2.1 Concept of UML

2.2 Advantages of UML

3. Basic Structural Modeling

- 3.1 Classes
- 3.2 Relationship
- 3.3 Common Mechanism
- 3.4 Class Diagram (Minimum three examples should be covered)

4. Advanced Structural Modeling

- 4.1 Advanced Classes
- 4.2 Advanced Relationship
- 4.3 Interface
- 4.4 Types and Roles

4.5 Packages

4.6 Object Diagram (Minimum three examples should be covered)

5. Basic Behavioral Modeling

[9]

[5]

[4]

[2]

[7]

5.1 Interactions

5.2 Use Cases and Use Case Diagram with stereo types (Minimum three examples should be covered)

5.3 Interaction Diagram (Minimum two examples should be covered)

5.4 Sequence Diagram (Minimum two examples should be covered)

5.6 Activity Diagram (Minimum two examples should be covered)

5.6 State Chart Diagram (Minimum two examples should be covered)

6. Object Oriented Analysis

- 6.1 Iterative Development and the Rational Unified Process
- 6.2 Inception

6.3 Understanding Requirements

6.4 Use Case Model From Inception to Elaboration

6.5 Elaboration

7. Object Oriented Design

7.1 The Booch Method, The Coad and Yourdon Method and Jacobson Method and Raumbaugh Method

7.2 The Generic Components of the OO Design Model

7.3 The System Design Process - Partitioning the Analysis Model, Concurrency and Sub System Allocation, Task Management Component, The Data Management Component, The Resource Management Component, Inter Sub System Communication

7.4 Object Design Process

8. Architectural modeling

8.1 Component

8.2 Components Diagram (Minimum two examples should be covered)

8.3 Deployment Diagram (Minimum two examples should be covered)

8.4 Collaboration Diagram (Minimum two examples should be covered)

9. Object Oriented Testing

9.1 Object Oriented Testing Strategies

9.2 Test Case Design for Object Oriented Software

9.3 Inter Class Test Case Design

(Use of any freeware designing tool)

References.

1. Grady Booch, James Rambaugh, The Unified Modeling Language User/Reference Guide, Pearson Education INC

2. Ivar Jacobson, Object Oriented Software Engineering, Pearson Education INC

3. Craig Larman, Applying UML and Patterns Pearson Education INC

4. Bennett, Simon, Object Oriented Analysis and Design McGraw Hill

[6]

[6]

[4]

[5]

SAVITRIBAI PHULE PUNE UNIVERSITY T.Y. B. Sc. COMPUTER SCIENCE SYLLABUS **TO BE IMPLEMENTED FROM ACADEMIC YEAR 2015-16 TITLE OF PAPER :Computer Graphics** Code No. : CS-346

	Semester IV	Total Lectures: 48
e – Re	quisites	
• I	Computer programming skills in C programming langu Basic understanding of use of data structures Basic Mathematical concepts related to matrices and ge	
ojectiv	es	
•] •] •]	To study how graphics objects are represented in Comp To study how graphics system in a computer supports p To study how interaction is handled in a graphics system To study how to manipulate graphics object by applying To provide the programmer's perspective of working of	presentation of graphics information m g different transformations
	luction to Computer graphics	[4]
2 Com ansfor 3 Appl 3 Pixel	duction to computer graphics & graphics systems ponents of Computer Graphics Representation, Presen mations ications of Computer Graphics /Point ,Raster v/s Vector ,RGB color model, intensity ramming essentials – event driven programming. Oper	
Input	devices and Interaction tasks	[4]
2 Physick, tou Keyb Grap	cal Interaction – Locator, valuator, pick and choice; ical devices used for interaction – keyboard, mouse, tra ch panel, data glove; oard, Mouse interaction in OpenGL hical User Interfaces- cursors, radio buttons, scroll bar ementing GUI in open GL	
	ntation and Output devices	`[4]
2 Displ	ntation Graphics - frame buffer, display file, lookup ta ay devices, Random and Raster scan display devices; G copy devices - Plotters and Printers	
	er Scan Graphics drawing algorithms; DDA algorithm, Bresenham's lin	[10] the drawing algorithm, Circle generation
	conversions- Generation of the Display, Image compre-	ession
	aying Lines and characters gon filling -Scan converting polygons, fill algorithms, I 1	3oundary fill algorithm, flood fill
Tra	nsformations	[7]
	e transformations: translation, rotation, scaling; Matrix linates, Reflection, shear	representations & homogeneous
· · ·		·····

- 5.2 Transformation of points, lines, parallel lines, intersecting lines. Viewing pipeline
- 5.3 Window to viewport co-ordinate transformation. Setting window and viewport in OpenGL.

Pre –

- •
- •
- •

Objec

1. Intr

- 1.1 In
- 1.2 C Transf
- 1.3 Ap
- 1.3 Piz
- 1.4 Pr

2. Inp

2.4 Ke

- 2.5 Gr
- 2.6 Im

3. Pres

- 3.1 Pre
- 3.2 Di

3.3 Ha

4. Ra

4.3 Di

5. T 5.1 Ba

6 Clipping

- 6.1 clipping operations, point clipping,
- 6.2 Line clipping; Cohen Sutherland algorithm, Midpoint subdivision algorithm, Cyrus beck algorithm;
- 6.3 Polygon clipping, Sutherland Hodgman algorithm, Weiler-Atherton Algorithm

7 3D transformation & viewing

- 7.1 3D transformations: translation, rotation, scaling & other transformations;
- 7.2 Three dimensional viewing, Parallel and Perspective projections,
- 7.3 View Volumes and General Projection Transformations.
- 7.4 3 D clipping

8 Hidden surfaces Elimination

8.1 Depth comparison, A-buffer algorithm, Back face detection; Depth -Buffer

8.2 Scan-line Method - BSP tree method, the Painter's algorithm, Area-subdivision algorithm;

Text Books:

- 1. Hearn, Baker "Computer Graphics (C version 2nd Ed.)" Pearson education
- 2. F. S. Hill, Stephen Kelly, Computer Graphics using OpenGL, PHI Learning
- 3. David F. Rogers Procedural Elements of Computer Graphics, Tata McGRAw Hill

Reference Books:

- 4. Foley, Vandam, Feiner, Hughes "Computer Graphics principles (2nd Ed.) Pearson Education.
- 5. W. M. Newman, R. F. Sproull "Principles of Interactive computer Graphics" TMH.
- 6. D. F. Rogers, J. A. Adams "Mathematical Elements for Computer Graphics (2nd Ed.)" TMH
- 7. Z. Xiang, R. Plastock " Schaum's outlines Computer Graphics (2nd Ed.)" TMH

[6]

[4]

SAVITRIBAI PHULE PUNE UNIVERSITY T.Y. B. Sc. COMPUTER SCIENCE SYLLABUS TO BE IMPLEMENTED FROM ACADEMIC YEAR 2015-16 TITLE OF PAPER : System Programming & Operating System Code No. : CS-347

Aim:

To understand the process of designing and implementing System programs and operating system components.

Objective :-

1. Design and implement System programs with minimal features to understand their complexity.

2. Design and implement simulations of operating system level procedures.

Syllabus

Sr. No	Topic	Lectures
1	Line Editor	8 lectures
2	SMAC0 simulator	8 lectures
3	Assembler	12 Lectures
4	Macro processor	12 lectures
5	DFA driver	8 lectures
6	Development Utilities	8 lectures
7	Toy shell	8 Lectures
8	CPU Scheduler	12 lectures
9	Deadlock detection	8 lectures
10	Page Replacement Algorithms	12 lectures
11	File Allocation methods	12 Lectures

Examination

Internal Marks : Activity + Labbook(10+10)

External Marks : two programs(35each) oral(5) Activity(5)

SAVITRIBAI PHULE PUNE UNIVERSITY T.Y. B. Sc. COMPUTER SCIENCE SYLLABUS TO BE IMPLEMENTED FROM ACADEMIC YEAR 2015-16 TITLE OF PAPER :Lab Course II – Programming in Java Code No. : CS-348

Aim:

To understand the process of designing and implementing Core and Advanced Java programs.

Objective :-

- 1. Implement core Java programs to solve simple problems
- 2. Implement Client and Server end Java programs

Syllabus

Sr. No	Торіс	Lectures	
Core and Advanced Java			
1	Simple Java programs	8 Lectures	
2	Arrays and Packages	8 Lectures	
3	Inheritance and Interfaces	8 Lectures	
4	Exception Handling	8 Lectures	
5	File Handling	8 Lectures	
6	GUI designing & Event Handling	8 Lectures	
7	Database Programming	8 Lectures	
8	Multithreading	4 Lectures	
9	Collection	8 Lectures	
10	Servlets	8 Lectures	
11	JSP	8 Lectures	
12	Socket Programming	4 Lectures	
Computer Graphics			
1	Simple Graphics program using OpenGL	4 Lectures	
2	Using graphics primitives to display graphics	4 Lectures	
3	Window to viewport transformations and other	4 Lectures	
	transformations		
4	Using simple Keyboard and Mouse interaction	4 Lectures	
5	Graphics Mini project	16 Lectures	

Examination

Internal Marks : Activity(CG) + Seminar(Enhanced java+ listening) (10+10)

External Marks : two programs(30each) oral(5) Activity(5)+ Labbook(10)

SAVITRIBAI PHULE PUNE UNIVERSITY Proposed Draft of T.Y. B. Sc. COMPUTER SCIENCE SYLLABUS TO BE IMPLEMENTED FROM ACADEMIC YEAR 2015-16 TITLE OF PAPER :Lab Course III – Programming in PHP & Project Code No. : CS-349

Aim:

To understand the process of designing and implementing Web applications, using PHP.

Objective :-

1. Implement Simple PHP programs to solve simple problems

Syllabus

Sr. No	Topic	Lectures	
РНР			
1	String manipulation	8 Lectures	
2	Arrays	8 Lectures	
3	Inheritance	8 Lectures	
4	File Handling	8 Lectures	
5	Form designing	8 Lectures	
6	Database Connectivity	8 Lectures	
7	Sessions and cookies	8 Lectures	
8	Java script with AJAX	8 Lectures	
Networking			
1	Setting a LAN Environment	4 Lectures	
2	Configuring the Server	4 Lectures	
3	Use of Service Primitives	4 Lectures	
4	Use of Networking Tools	12 Lectures	
Project			
1	Choose Project topic and Prepare problem description		
2	Study of Existing System		
3	Identifying users and functionalities of proposed		
	system		
4	Preparing the Design of the proposed system- Data		
	Design Screen and Report Designs		
5	Implementation		

Examination

Internal Marks: Project (20) Continuous Evaluation.

External Marks: One programs (30) (large program on PHP + small program PHP), networking(10)

 Internal, Lab book(10), Project(30) -20 Marks External + 10 Marks Internal for Project Demo before Final Practical Exam